## BBR H Bar System

## Hot Rolled Threaded Bars for Construction and

## Underground Applications

The BBR H Bar is a steel threaded bar with superior fatigue performance and the widest range of bar diameters on the international market place. It is available with steel grades ranging from $500 / 550 \mathrm{MPa}$ to $930 / 1080 \mathrm{MPa}$ (yield/ultimate) and in diameters from 20 mm to 75 mm .

The BBR H Bar has a specially designed continuous thread over its entire length allowing it to be easily cut or lengthened with couplers at any location. With its reliability, robustness and ease of installation and the full range of accessories - BBR H Bar is the ideal system for the most complex and technically challenging applications.


# BBR H Bar System <br> Hot Rolled Threaded Bars for Construction and Underground Applications 

## Testing \& quality assurance to international standards


#### Abstract

At BBR, we take pride in every piece of construction technology that we supply and this is why we conduct thorough independently verified laboratory testing. We expect that each product should conform to the highest standards and that it should reach our customers in prime condition, ready for immediate use.


Independently verified testing As a part of our testing program for technical approval, we have performed key tests to verify the major mechanical properties of the BBR H Bar System. We have carried out static, fatigue and material testing on the system, comprising the accessories. All the tests were executed in independent accredited European laboratories.

The testing results proved that the BBR H Bar System not only complies with the latest European norms, standards and guidelines, but also fulfills additional requirements specified by local authorities in other regions.

## Static test on tensile bar element

Static testing of tensile elements is carried out according to European norms and international standards.
A bar specimen is stressed by standard stressing equipment to the maximum force (corresponding to ultimate tensile strength) at a specified loading rate. Elongation of the bars is measured during the tests.

The maximum force and force at yield must meet the specified values as $5 \%$ fractiles. The ratio of maximum force to force at yield, as well as the elongation at maximum force ( $\mathrm{A}_{\mathrm{gt}}$ ) must meet values as $10 \%$ fractiles. $\mathrm{A}_{\mathrm{gt}}$ is expected to be at least $3.5 \%$.

## Static test on bar system

Static testing of the whole system complies with European technical approval guidelines. A complete bar system kit consists of bar, anchor plate, nut and coupler. The assembled system is stressed in stages using standard stressing equipment to $80 \%$ of characteristic ultimate tensile stress. The load is then maintained for one hour for the bonded system, or two hours for the unbonded system. The deformation during loading is measured. Additionally, any slip at the anchorage and coupler, as well as any residual deformation of anchorage components after stressing is monitored. All type of nuts and couplers are tested. In each test, $100 \%$ of the specified maximum force is attained, with deformation stabilizing at $80 \%$ of ultimate tensile stress within 30 minutes.


Fatigue test on tensile bar element Fatigue testing of the bars is executed under the provisions of European norms and international standards. A bar specimen is stressed by a resonance testing rig to a specified force range with stress variation cycles. All the bars withstood two million load cycles, with an upper limit at $70 \%$ of characteristic ultimate tensile stress and a specified stress range without failure.

## BBR H Bar System <br> Hot Rolled Threaded Bars for Construction and Underground Applications

## Fatigue test on bar system

Fatigue testing of the system follows
European Technical Approval guidelines. A complete bar system kit - consisting of bar, anchor plate, nut and coupler - is stressed by a resonance testing rig to a specified force range with stress variation cycles. All types of nuts and couplers are also tested, and any slip at the anchorage and coupler is measured. The acceptance criterion is to pass two million load cycles, with an upper force at 65\% of characteristic ultimate tensile stress and a stress range of not less than 80MPa.

## Verification of load transfer in the anchorage zone

The load transfer in the anchorage zone, including relevant reinforcement and concrete with the recommended dimensions for a particular concrete strength, should be verified according to the European and international codes and technical approval guidelines. During a load transfer test, the anchorage components are subjected to 10 load cycles between $12 \%$ and $80 \%$ of characteristic ultimate tensile stress, before the complete assembly is loaded to failure. An efficiency of at least $110 \%$ of characteristic ultimate tensile stress must be achieved.

## Packing \& shipping

Our products are shipped globally to various projects, therefore proper packing is a critical step in ensuring products are delivered undamaged. This is especially important when it concerns products which feature additional corrosion protection such as galvanizing or epoxy coating.

The highest standards are applied to the BBR packing regime, ensuring goods are wrapped with protective paper or fabric, properly bound with steel strapping and placed inside wooden crates.

## Additional testing on request

BBR has a long experience of working with international standards and laboratory test regimes, thus our engineers are able to perform any project-specific tests that may be required. For example, static and fatigue testing conforming with EN ISO 15630-1 and also with ETAG 013 are available. Please contact us for further details.


# BBR H Bar System <br> Hot Rolled Threaded Bars for Construction and Underground Applications 

## BBR H930 Bar System

Threaded Bar and Accessories Specifications

| Property | Size |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $ø 32$ | $\varnothing 36$ | $\varnothing 40$ | $\varnothing 50$ | $\varnothing 57$ | $\varnothing 63.5$ | $\varnothing 75$ |  |
| Nominal diameter | mm | 25 | 32 | 36 | 40 | 50 | 57 | 63.5 | 75 |
| Yield stress | MPa | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 |
| Ultimate stress | MPa | 1,080 | 1,080 | 1,080 | 1,080 | 1,080 | 1,080 | 1,080 | 1,080 |
| Yield load | kN | 457 | 748 | 947 | 1,169 | 1,826 | 2,373 | 2,945 | 4,109 |
| Ultimate load | kN | 530 | 869 | 1,099 | 1,357 | 2,120 | 2,756 | 3,420 | 4,771 |
| Nom. cross-section | $\mathrm{mm}^{2}$ | 491 | 804 | 1,018 | 1,257 | 1,963 | 2,552 | 3,167 | 4,418 |
| Weight | $\mathrm{kg} / \mathrm{m}$ | 4.1 | 6.7 | 8.4 | 10.3 | 16.3 | 21.6 | 26.5 | 36.9 |


| Anchor nut | mm | 50 | 60 | 65 | 70 | 80 | 90 | 102 | 105 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SW | mm | 60 | 72 | 80 | 100 | 110 | 115 | 130 | 145 |
| L | kg | 0.7 | 1.2 | 1.5 | 2.0 | 2.7 | 3.9 | 5.7 | 5.5 |
| Weight |  |  |  |  |  |  |  |  |  |
| Domed nut | mm | 50 | 60 | 65 | 70 | 85 | 90 | 100 | 115 |
| SW | mm | 75 | 90 | 100 | 115 | 145 | 115 | 115 | 190 |
| L | mm | 72 | 80 | 90 | 100 | 120 | 110 | 120 | 140 |
| D | kg | 1.1 | 1.8 | 2.3 | 3.1 | 5.4 | 4.7 | 6.0 | 11.2 |
| Weight |  |  |  |  |  |  |  |  |  |


| Spherical nut | mm | 50 | 60 | 65 | 70 | 80 | 90 | 102 | 105 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SW | mm | 60 | 72 | 80 | 100 | 110 | 115 | 130 | 145 |
| L | kg | 0.6 | 1.2 | 1.4 | 2.0 | 2.7 | 3.9 | 5.7 | 5.5 |
| Weight |  |  |  |  |  |  |  |  |  |


| Coupler | mm | 50 | 60 | 70 | 75 | 88 | 95 | 102 | 115 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{D}_{\text {ext }}$ | mm | 132 | 168 | 180 | 220 | 270 | 240 | 260 | 290 |
| L | kg | 1.4 | 2.5 | 3.6 | 5.1 | 8.9 | 7.75 | 9.6 | 12.3 |
| Weight |  |  |  |  |  |  |  |  |  |


| Bearing plate for anchor nut |  |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | mm | 115 | 150 | 165 | 185 | 225 | -1 | -1 | -1 |
| E | mm | 30 | 40 | 45 | 50 | 65 | -1 | -1 | -1 |
| Weight | kg | 2.9 | 6.6 | 8.9 | 12.5 | 24.1 | -1 | -1 | -1 |
| Bearing plate for domed nut |  |  |  |  |  |  |  |  |  |
| L | mm | 115 | 150 | 165 | 185 | 225 | -1 | -1 | -1 |
| E | mm | 30 | 40 | 45 | 50 | 65 | -1 | -1 | -1 |
| D | mm | 35 | 45 | 50 | 55 | 65 | -1 | -1 | -1 |
| Weight | kg | 2.7 | 6.3 | 8.5 | 11.9 | 23.5 | -1 | -1 | -1 |
| Bearing plate for spherical nut |  |  |  |  |  |  |  |  |  |
| L | mm | 115 | 150 | 165 | 185 | 225 | -1 | -1 | -1 |
| E | mm | 30 | 40 | 45 | 50 | 65 | -1 | -1 | -1 |
| D | mm | 35 | 45 | 50 | 55 | 65 | -1 | -1 | -1 |
| Weight | kg | 2.8 | 6.4 | 8.8 | 12.3 | 23.9 | -1 | -1 | -1 |

## Bearing plate for anchor nut

Bearing plate for domed nut

Bearing plate for spherical nut
upon request for specific project(s)


Domed anchor nut


Spherical anchor nut

## BBR H Bar System

Hot Rolled Threaded Bars for Construction and
Underground Applications

## BBR H835² Bar System

Threaded Bar and Accessories Specifications

| Property | Size | Component dimensions |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $ø 32$ | $\varnothing 36$ | $\varnothing 40$ | $\varnothing 50$ | $\varnothing 57$ | $\varnothing 63.5$ | $\varnothing 75$ |  |
| Nominal diameter | mm | 25 | 32 | 36 | 40 | 50 | 57 | 63.5 | 75 |
| Yield stress | MPa | 830 | 830 | 830 | 830 | 830 | 835 | 835 | 835 |
| Ultimate stress | MPa | 1,030 | 1,030 | 1,030 | 1,030 | 1,030 | 1,035 | 1,035 | 1,035 |
| Yield load | kN | 407 | 667 | 845 | 1,043 | 1,629 | 2,131 | 2,644 | 3,689 |
| Ultimate load | kN | 505 | 828 | 1,048 | 1,294 | 2,022 | 2,641 | 3,278 | 4,573 |
| Nom. cross-section | $\mathrm{mm}{ }^{2}$ | 491 | 804 | 1,018 | 1,257 | 1,963 | 2,552 | 3,167 | 4,418 |
| Weight | $\mathrm{kg} / \mathrm{m}$ | 4.1 | 6.7 | 8.4 | 10.3 | 16.3 | 21.6 | 26.5 | 36.9 |


| Anchor nut | mm | 50 | 60 | 65 | 70 | 80 | 90 | 102 | 105 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SW | mm | 60 | 72 | 80 | 100 | 110 | 115 | 130 | 145 |
| L | kg | 0.7 | 1.2 | 1.5 | 2.5 | 2.7 | 3.9 | 5.7 | 5.5 |
| Weight |  |  |  |  |  |  |  |  |  |

Domed nut

| SW | mm | 50 | 60 | 65 | 70 | 85 | 90 | 100 | 115 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | mm | 75 | 90 | 100 | 115 | 145 | 115 | 115 | 190 |
| D | mm | 72 | 80 | 90 | 100 | 120 | 110 | 120 | 140 |
| Weight | kg | 1.1 | 1.8 | 2.3 | 3.1 | 5.4 | 4.7 | 6.0 | 11.2 |


| Spherical nut | mm | 50 | 60 | 65 | 70 | 80 | 90 | 102 | 105 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SW | mm | 60 | 72 | 80 | 100 | 110 | 115 | 130 | 145 |
| L | kg | 0.6 | 1.2 | 1.4 | 2.0 | 2.7 | 3.9 | 5.7 | 5.5 |
| Weight |  |  |  |  |  |  |  |  |  |


| Coupler | mm | 50 | 60 | 70 | 75 | 88 | 95 | 102 | 115 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{D}_{\text {ext }}$ | mm | 132 | 168 | 180 | 220 | 270 | 240 | 260 | 290 |
| L | kg | 1.4 | 2.5 | 3.6 | 5.1 | 8.9 | 7.75 | 9.6 | 12.3 |
| Weight |  |  |  |  |  |  |  |  |  |

## Bearing plate for anchor nut

| L | mm | 100 | 150 | 155 | 170 | 225 | -1 | -1 | -1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | mm | 25 | 40 | 40 | 45 | 65 | -1 | -1 | -1 |
| Weight | kg | 1.8 | 6.6 | 6.9 | 9.4 | 24.1 | -1 | -1 | -1 |

## Bearing plate for domed nut

| L | mm | 100 | 150 | 155 | 170 | 225 | -1 | -1 | -1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | mm | 25 | 40 | 40 | 45 | 65 | -1 | -1 | -1 |
| D | mm | 35 | 45 | 50 | 55 | 65 | -1 | -1 | -1 |
| Weight | kg | 1.6 | 6.3 | 6.6 | 8.9 | 23.5 | -1 | -1 | -1 |

Bearing plate for spherical nut

| L | mm | 100 | 150 | 155 | 170 | 225 | -1 | -1 | -1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | mm | 25 | 40 | 40 | 45 | 65 | -1 | -1 | -1 |
| D | mm | 35 | 45 | 50 | 55 | 65 | -1 | -1 | -1 |
| Weight | kg | 1.7 | 6.4 | 6.8 | 9.2 | 23.9 | -1 | -1 | -1 |

${ }^{1}$ upon request for specific project(s) $\mid{ }^{2}$ complies with H 830 steel grade

Steel Accessories


Hex anchor nut


Bearing plate with cone


Bearing plate

## BBR H Bar System <br> Hot Rolled Threaded Bars for Construction and Underground Applications

## BBR H670 Bar System

Threaded Bar Accessories Specifications

| Property | Size | Component dimensions |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ø22 | ø25 | $\varnothing 28$ | ø30 | ø35 | $\varnothing 43$ | $\varnothing 50$ | ¢57.5 | ø63.5 | ¢75 |
| Nominal diameter | mm | 22 | 25 | 28 | 30 | 35 | 43 | 50 | 57.5 | 63.5 | 75 |
| Yield stress | MPa | 670 | 670 | 670 | 670 | 670 | 670 | 670 | 670 | 670 | 670 |
| Ultimate stress | MPa | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 |
| Yield load | kN | 255 | 329 | 413 | 474 | 645 | 973 | 1,315 | 1,740 | 2,122 | 2,960 |
| Ultimate load | kN | 304 | 393 | 493 | 566 | 770 | 1,162 | 1,571 | 2,078 | 2,534 | 3,535 |
| Nom. cross-section | mm 2 | 380 | 491 | 616 | 707 | 962 | 1,466 | 1,960 | 2,597 | 3,167 | 4,418 |
| Weight | kg/m | 2.98 | 3.85 | 4.83 | 5.54 | 7.55 | 11.40 | 15.41 | 20.38 | 24.86 | 34.68 |

Accessories Specifications *

| Property | Size | Component dimensions |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ø22 | ¢25 | $ø 28$ | ø30 | ø35 | ø43 | $ø 50$ | ø57.5 | ø63.5 | ¢75 |
| Anchor nut |  |  |  |  |  |  |  |  |  |  |  |
| SW | mm | 41 | 46 | 50 | 55 | 65 | 80 | 80 | 90 | 100 | 100 |
| L | mm | 50 | 55 | 60 | 65 | 70 | 90 | 100 | 120 | 110 | 130 |
| Weight | kg | 0.39 | 0.53 | 0.67 | 0.90 | 1.37 | 2.62 | 2.80 | 4.42 | 4.41 | 4.90 |

## Domed nut

| SW | mm | 36 | 41 | 46 | 50 | 60 | 70 | 80 | 90 | 100 | 120 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D | mm | 45 | 50 | 55 | 60 | 70 | 85 | 100 | 115 | 125 | 150 |
| L | mm | 53 | 60 | 67 | 71 | 83 | 102 | 116 | 137 | 151 | 174 |
| Weight | kg | 0.31 | 0.43 | 0.60 | 0.79 | 1.30 | 2.20 | 3.59 | 5.50 | 7.30 | 11.90 |

Lock nut

| SW | mm | 36 | 41 | 46 | 50 | 55 | 70 | 80 | 90 | 100 | 100 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | mm | 22 | 22 | 30 | 30 | 40 | 50 | 50 | 60 | 70 | 80 |
| Weight | kg | 0.12 | 0.15 | 0.26 | 0.31 | 0.47 | 1.00 | 1.39 | 1.93 | 3.03 | 2.33 |

Coupler

| $\mathrm{D}_{\text {ext }}$ | mm | 40 | 45 | 50 | 55 | 65 | 80 | 90 | 102 | 114 | 108 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | mm | 110 | 120 | 140 | 150 | 170 | 200 | 210 | 250 | 300 | 260 |
| Weight | kg | 0.71 | 0.94 | 1.36 | 1.84 | 2.95 | 5.42 | 7.24 | 10.31 | 14.48 | 8.74 |

Bearing plate for anchor nut

| L | mm | 80 | 90 | 100 | 110 | 125 | 150 | 175 | 200 | 220 | 260 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | mm | 20 | 20 | 20 | 25 | 25 | 30 | 30 | 45 | 50 | 65 |
| Weight | kg | 2.26 | 2.20 | 2.90 | 3.74 | 5.80 | 11.40 | 17.03 | 25.46 | 31.05 | 53.10 |

## Bearing plate for domed nut

| L | mm | 110 | 125 | 135 | 145 | 170 | 210 | 240 | 275 | 300 | 325 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | mm | 30 | 30 | 35 | 35 | 40 | 50 | 55 | 60 | 65 | 70 |
| Weight | kg | 2.62 | 3.39 | 4.59 | 5.32 | 8.36 | 15.96 | 22.77 | 32.77 | 42.00 | 52.44 |

*Refer to previous page for dimension nomenclature.

## BBR H Bar System <br> Hot Rolled Threaded Bars for Construction and Underground Applications

## BBR H500 Bar System

Threaded Bar Accessories Specifications

| Property | Size | Component dimensions |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ø20 | ø25 | ø28 | ø32 | $ø 40$ | $\emptyset 43$ | ø50 | $\varnothing 57.5$ | ø63.5 | ø75 |
| Nominal diameter | mm | 20 | 25 | 28 | 32 | 40 | 43 | 50 | 57.7 | 63.5 | 75 |
| Yield stress | MPa | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 555 | 555 | 500 |
| Ultimate stress | MPa | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 700 | 700 | 550 |
| Yield load | kN | 157 | 246 | 308 | 402 | 629 | 726 | 982 | 1,441 | 1,758 | 2,209 |
| Ultimate load | kN | 172 | 270 | 339 | 442 | 691 | 799 | 1,078 | 1,818 | 2,217 | 2,430 |
| Nom. cross-section | mm2 | 314 | 491 | 616 | 804 | 1,257 | 1,466 | 1,964 | 2,597 | 3,167 | 4,418 |
| Weight | kg/m | 2.47 | 3.85 | 4.83 | 6.31 | 9.87 | 11.40 | 15.41 | 20.38 | 24.86 | 34.68 |
| Left-hand thread | Elongation at max. load $\mathrm{A}_{\mathrm{gt}}=6 \% \leq \varnothing 32 \mathrm{~mm}$ |  |  |  |  |  | Elongation at max. load $\mathrm{A}_{\mathrm{gt}}=5 \% \varnothing 40$ to 75 mm |  |  |  |  |

Accessories Specifications *

| Property | Size | Component dimensions |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\emptyset 20$ | $ø 25$ | $ø 28$ | ø32 | $\varnothing 40$ | ¢43 | $\varnothing 50$ | $ø 57.5$ | ø63.5 | $\varnothing 75$ |
| Anchor nut |  |  |  |  |  |  |  |  |  |  |  |
| SW | mm | 36 | 41 | 46 | 55 | 65 | 70 | 80 | 90 | 100 | 110 |
| L | mm | 45 | 50 | 55 | 60 | 70 | 85 | 85 | 100 | 135 | 120 |
| Weight | kg | 0.26 | 0.34 | 0.48 | 0.78 | 1.19 | 1.86 | 2.17 | 3.65 | 6.60 | 7.02 |
| Domed nut |  |  |  |  |  |  |  |  |  |  |  |
| SW | mm | 36 | 41 | 41 | 46 | 60 | 70 | 80 | 90 | 100 | 120 |
| L | mm | 41 | 45 | 54 | 57 | 70 | 80 | 85 | 100 | 115 | 120 |
| D | mm | 49 | 55 | 62 | 70 | 88 | 100 | 107 | 120 | 144 | 165 |
| Weight | kg | 0.26 | 0.35 | 0.45 | 0.65 | 1.25 | 2.26 | 2.60 | 4.15 | 6.00 | 9.69 |


| Lock nut | mm | 32 | 41 | 41 | 50 | 60 | 70 | 80 | 90 | 90 | 110 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SW | mm | 20 | 20 | 25 | 30 | 35 | 40 | 50 | 60 | 75 | 80 |
| L | kg | 0.08 | 0.14 | 0.15 | 0.28 | 0.45 | 0.87 | 1.21 | 2.16 | 2.18 | 4.54 |
| Weight |  |  |  |  |  |  |  |  |  |  |  |

Coupler

| $\mathrm{D}_{\text {ext }}$ | mm | 36 | 40 | 45 | 52 | 65 | 80 | 80 | 102 | 102 | 140 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | mm | 105 | 115 | 125 | 140 | 160 | 170 | 200 | 230 | 260 | 290 |
| Weight | kg | 0.52 | 0.61 | 0.85 | 1.26 | 2.34 | 4.75 | 4.23 | 10.31 | 9.55 | 24.96 |

Bearing plate for anchor nut

| L | mm | 70 | 70 | 100 | 120 | 150 | 170 | 190 | 220 | 245 | 275 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | mm | 10 | 10 | 12 | 20 | 30 | 35 | 45 | 50 | 50 | 65 |
| Weight | kg | 0.33 | 0.35 | 0.86 | 2.06 | 4.90 | 7.40 | 11.82 | 17.69 | 22.38 | 35.60 |

Bearing plate for domed nut

| L | mm | 70 | 70 | 100 | 120 | 150 | 170 | 190 | 220 | 245 | 275 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | mm | 12 | 12 | 20 | 20 | 30 | 35 | 45 | 50 | 50 | 65 |
| Weight | kg | 0.37 | 0.34 | 1.33 | 1.91 | 4.48 | 6.61 | 10.78 | 16.25 | 20.09 | 32.60 |

*Refer to previous page for dimension nomenclature.

## BBR H Bar System

## Hot Rolled Threaded Bars for Construction and Underground Applications

## Features

- Widest range of bar diameters from 20 mm up to 75 mm
- Continuous robust thread appropriate for all environmental conditions, such as in groundwork applications, and suitable for cutting or lengthening with a coupler at any location
- High quality threaded bar system with superior fatigue performance
- Widest range of bar grades from 550 MPa up to $1,080 \mathrm{MPa}$ (ultimate)
- Full range of accessories facilitate easy and reliable installation
- Suitable for temporary and permanent applications
- Available in standard lengths of 11.8 m (custom lengths on request)
- Tested to the latest international standards


## Applications

- Post-tensioning
- Geotechnical anchoring
- Ground stabilisation
- Temporary and permanent works
- Construction \& civil engineering projects
- Concrete reinforcement


