
European Technical Assessment ETA – 09/ 0286 CE

BR VT CONA CMI BT nal Post-tensioning System with 02 to 61 Strands nter

Responsible BBR PT Specialist Company

Austrian Institute of Construction Engineering Schenkenstrasse 4 | T+43 1 533 65 50 1010 Vienna | Austria | F+43 1 533 64 23

www.oib.or.at | mail@oib.or.at

European Technical Assessment

ETA-09/0286 of 19.09.2018

General part

Technical Assessment Body issuing the European Technical Assessment

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) № 305/2011, on the basis of

This European Technical Assessment replaces

Österreichisches Institut für Bautechnik (OIB) Austrian Institute of Construction Engineering

BBR VT CONA CMI BT – Internal Posttensioning System with 02 to 61 Strands

Bonded or unbonded post-tensioning kits for prestressing of structures with strands

BBR VT International Ltd Ringstrasse 2 8603 Schwerzenbach (ZH) Switzerland

BBR VT International Ltd Ringstrasse 2 8603 Schwerzenbach (ZH) Switzerland

60 pages including Annexes 1 to 33, which form an integral part of this assessment.

EAD 160004-00-0301, European Assessment Document for Post-Tensioning Kits for Prestressing of Structures.

European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018.

Table of contents

EUROPEAN TECHNICAL ASSESSMENT ETA-09/0286 OF 19.09.2018	1
GENERAL PART	1
TABLE OF CONTENTS	2
REMARKS	6
SPECIFIC PARTS	6
1 TECHNICAL DESCRIPTION OF THE PRODUCT	
1.1 General	6
PT SYSTEM	7
1.2 Designation and range of anchorages and couplers	7
1.2.1 General	
1.2.2 Designation	7
1.2.3 Anchorage, FA or SA	7
1.2.3.1 General	7
1.2.3.2 Restressable and exchangeable tendon	8
1.2.4 Fixed and stressing coupler	8
1.2.4.1 General	-
1.2.4.2 Single plane coupler, FK or SK	
1.2.4.3 Sleeve coupler, FH or SH	
1.2.5 Moveable coupler, BK or BH	
1.2.6 Layout of the anchorage recess	
1.3 Designation and range of the tendons	
1.3.1 Designation	
1.3.2 Range	
1.3.2.1 General	
1.3.2.2 CONA CMI BT n06-140 1.3.2.3 CONA CMI BT n06-150	
1.4 Duct	
1.4.1 Use of duct	
1.4.2 Degree of filling	
1.4.3 Circular steel strip sheath	
1.4.4 Flat corrugated steel duct	
1.4.5 Pre-bent smooth circular steel duct	
1.5 Friction losses	
1.6 Support of tendon	
1.7 Slip at anchorage and coupler	
1.8 Centre spacing and edge distance for the anchorage	
1.9 Minimum radii of curvature	
1.10 Concrete strength at time of stressing	
1.10 Outorete su engui at une of su essing	

Page 3 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

nic	COMPONENTS	14
ctro	1.11 Prestressing steel strands	14
ec	1.12 Anchorage and coupler	15
Φ	1.12.1 General	15
	1.12.2 Anchor head	15
\geq	1.12.3 Bearing trumplate	15
cob	1.12.4 Trumpet	15
-	1.12.5 Coupler anchor head	15
onic	1.12.6 Ring wedge	16
ctr	1.12.7 Helix and additional reinforcement	16
ele	1.12.8 Protection cap	16
	1.12.9 Material specifications	16
	1.13 Permanent corrosion protection	16
copy	2 SPECIFICATION OF THE INTENDED USES IN ACCORDANCE WITH THE APPLICABLE EUROPEAN ASSESSMENT DOCUMENT (HEREINAFTER EAD)	
nic	2.1 Intended uses	17
ctror	2.2 Assumptions	17
ect	2.2.1 General	17
Ð	2.2.2 Packaging, transport, and storage	17
	2.2.3 Design	18
\geq	2.2.3.1 General	18
do	2.2.3.2 Fixed and stressing coupler	
с С	2.2.3.3 Anchorage Recess	
onic	2.2.3.4 Maximum prestressing forces	
ctro	2.2.3.5 Centre spacing, edge distance, and reinforcement in the anchorage zone	
ele(2.2.3.6 Tendons in masonry structures – load transfer to the structure	
Ψ	2.2.4 Installation 2.2.4.1 General	
	2.2.4.1 General 2.2.4.2 Stressing operation	
pγ	2.2.4.3 Restressing	
copy	2.2.4.4 Exchanging tendons	
	2.2.4.5 Filling operations	
Lon	2.2.4.5.1 Grouting	20
electronic	2.2.4.5.2 Filling with grease, wax, and an equivalent soft material	20
ele	2.2.4.5.3 Circulating dry air	
	2.2.4.5.4 Filling records	
	2.2.4.6 Welding	
copy	2.3 Assumed working life	
	3 PERFORMANCE OF THE PRODUCT AND REFERENCES TO THE METHODS USED FOR ITS ASSESSMENT	
nic	3.1 Essential characteristics	
ectronic	3.2 Product performance	
ec	3.2.1 Mechanical resistance and stability	23

 3.2.1.2 Resistance to fatigue	28 28
 3.2.1.2 Resistance to fatigue	
 32.1.2 Resistance to fatigue	28
 32.1.2 Resistance to fatigue	26
 3.2.1.2 Resistance to fatigue	26
 3.2.1.2 Resistance to fatigue	26
 3.2.1.2 Resistance to fatigue	26
 3.2.1.2 Resistance to fatigue	26
 3.2.1.2 Resistance to fatigue	25
 3.2.1.2 Resistance to fatigue	25
 3.2.1.2 Resistance to fatigue	25
 3.2.1.2 Resistance to fatigue	25
 3.2.1.2 Resistance to fatigue	24
 3.2.1.2 Resistance to fatigue	24
 3.2.1.2 Resistance to fatigue	24
 3.2.1.2 Resistance to fatigue	
 3.2.1.2 Resistance to fatigue	
 3.2.1.2 Resistance to fatigue	24
 3.2.1.2 Resistance to fatigue	
 3.2.1.2 Resistance to fatigue	23
 3.2.1.2 Resistance to fatigue	
3.2.1.2Resistance to fatigue3.2.1.3Load transfer to the structure	
3.2.1.1 Resistance to static load	

OIB-205-066/18-013

Page 5 of European Technical Assessment ETA-09/0286 of 19.09.2018,
replaces European technical approval ETA-09/0286
with validity from 30.06.2013 to 29.06.2018

ANNEX 11	MINIMUM RADIUS OF CURVATURE OF CIRCULAR DUCT FOR $P_{R, MAX} = 140 \text{ kN/m}$	38
ANNEX 12	MINIMUM CENTRE SPACING	39
ANNEX 13	MINIMUM EDGE DISTANCE	40
ANNEX 14	MATERIAL SPECIFICATIONS	41
ANNEX 15	MAXIMUM PRESTRESSING AND OVERSTRESSING FORCES	42
ANNEX 16	CONSTRUCTION STAGES	43
ANNEX 17	MINIMUM CONCRETE STRENGTH – HELIX – ADDITIONAL REINFORCEMENT – CENTRE SPACING AND EDGE DISTANCE	44
ANNEX 18	MINIMUM CONCRETE STRENGTH – HELIX – ADDITIONAL REINFORCEMENT – CENTRE SPACING AND EDGE DISTANCE	45
ANNEX 19	MINIMUM CONCRETE STRENGTH – HELIX – ADDITIONAL REINFORCEMENT – CENTRE SPACING AND EDGE DISTANCE	46
ANNEX 20	MINIMUM CONCRETE STRENGTH – HELIX – ADDITIONAL REINFORCEMENT – CENTRE SPACING AND EDGE DISTANCE	47
ANNEX 21	MINIMUM CONCRETE STRENGTH – HELIX – ADDITIONAL REINFORCEMENT – CENTRE SPACING AND EDGE DISTANCE	48
ANNEX 22	MINIMUM CONCRETE STRENGTH – HELIX – ADDITIONAL REINFORCEMENT – CENTRE SPACING AND EDGE DISTANCE	49
ANNEX 23	MINIMUM CONCRETE STRENGTH – HELIX – ADDITIONAL REINFORCEMENT – CENTRE SPACING AND EDGE DISTANCE	50
ANNEX 24	MINIMUM CONCRETE STRENGTH – HELIX – ADDITIONAL REINFORCEMENT – CENTRE SPACING AND EDGE DISTANCE	51
ANNEX 25	MODIFICATION OF CENTRE SPACING AND EDGE DISTANCE	52
ANNEX 26	DESCRIPTION OF INSTALLATION	53
ANNEX 27	DESCRIPTION OF INSTALLATION	54
ANNEX 28	PRESTRESSING STEEL STRAND SPECIFICATIONS	55
ANNEX 29	CONTENTS OF THE PRESCRIBED TEST PLAN	56
ANNEX 30	AUDIT TESTING	57
ANNEX 31	ESSENTIAL CHARACTERISTICS FOR THE INTENDED USES	58
ANNEX 32	REFERENCE DOCUMENTS	59
ANNEX 33	REFERENCE DOCUMENTS	60

electronic copv

electronic copy

electronic copy

Remarks

Translations of the European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of the European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of Österreichisches Institut für Bautechnik. Any partial reproduction has to be identified as such.

Specific parts

1 Technical description of the product

1.1 General

The European Technical Assessment¹ – ETA – applies to a kit, the PT system

BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands,

comprising the following components, see Annex 1, Annex 2, Annex 3, Annex 4, Annex 5, and Annex 6.

- Tendon

Internal tendon with 02 to 61 tensile elements

- Tensile element

7-wire prestressing steel strand with nominal diameters and maximum characteristic tensile strength as given in Table 1

Nominal diameter	Nominal cross-sectional area	Maximum characteristic tensile strength
mm	mm²	МРа
15.3	140	1 960
15.7	150	1 860

Table 1Tensile elements

NOTE 1 MPa = 1 N/mm²

- Anchorage and coupler

Anchorage of the prestressing steel strands with ring wedges

End anchorage

Fixed (passive) anchor or stressing (active) anchor as end anchorage, FA or SA, for tendons with 02, 03, 04, 05, 06, 07, 08, 09, 12, 13, 15, 16, 19, 22, 24, 25, 27, 31, 37, 42, 43, 48, 55, and 61 prestressing steel strands

ETA-09/0286 was firstly issued in 2010 as European technical approval with validity from 17.05.2010, amended in 2010 with validity from 29.09.2010, extended in 2013 with validity from 30.06.2013, and converted in 2018 to European Technical Assessment ETA-09/0286 of 19.09.2018.

Fixed or stressing coupler

Single plane coupler, FK or SK, for tendons with 02, 03, 04, 05, 06, 07, 08, 09, 12, 13, 15, 16, 19, 22, 24, 25, 27, and 31 prestressing steel strands

Sleeve coupler, FH or SH, for tendons with 02, 03, 04, 05, 06, 07, 08, 09, 12, 13, 15, 16, 19, 22, 24, 25, 27, 31, 37, 42, 43, 48, 55, and 61 prestressing steel strands

Moveable coupler

Single plane coupler, BK, for tendons with 02, 03, 04, 05, 06, 07, 08, 09, 12, 13, 15, 16, 19, 22, 24, 25, 27, and 31 prestressing steel strands

Sleeve coupler, BH, for tendons with 02, 03, 04, 05, 06, 07, 08, 09, 12, 13, 15, 16, 19, 22, 24, 25, 27, 31, 37, 42, 43, 48, 55, and 61 prestressing steel strands

- Bearing trumplate for tendons with 02, 03, 04, 05, 06, 07, 08, 09, 12, 13, 15, 16, 19, 22, 24, 25, 27, 31, 37, 42, 43, 48, 55, and 61 prestressing steel strands
- Helix and additional reinforcement in the region of the anchorage
- Corrosion protection for tensile elements, anchorages, and couplers

PT system

1.2 Designation and range of anchorages and couplers

1.2.1 General

End anchorages can be fixed or stressing anchorages. Couplers are fixed, stressing, or moveable. The principal dimensions of anchorages and couplers are given in Annex 2, Annex 3, Annex 4, Annex 5, Annex 17, Annex 18, Annex 19, Annex 20, Annex 21, Annex 22, Annex 23, and Annex 24.

1.2.2 Designation

	End anchorage e.g.	<u>S A CONA CMI BT</u>	<u>1906-150 1860</u>
	Fixed (F) or stressing (S)		
	Anchorage -		
	Designation of the tendon with information on number, cross-sectional a prestressing steel strands	rea, and characteris	j tic tensile strength of
	Coupler e.g.	F K <u>CONA CMI BT</u>	1906-150 1860
	Fixed (F), stressing (S) or moveable (B)		
	Coupler anchor head (K or H) -		
	Designation of the tendon - with information on number, cross-sectional a prestressing steel strands	rea, and characteris	tic tensile strength of
1.2.3	Anchorage, FA or SA		

1.2.3.1 General

Anchorage of prestressing steel strands is achieved by wedges and anchor heads, see Annex 1, Annex 2, and Annex 6. The anchor heads of the fixed and stressing anchorage are identical. A differentiation is needed for the construction works.

The wedges of inaccessible fixed anchors are secured with either a wedge retaining plate or springs and a wedge retaining plate. An alternative is pre-locking each individual prestressing steel strand with $\sim 0.5 \cdot F_{pk}$ and applying a wedge retaining plate.

Where

F_{pk}..... Characteristic value of maximum force of one single prestressing steel strand

1.2.3.2 Restressable and exchangeable tendon

Significant to a restressable and exchangeable tendon is the excess length of the prestressing steel strands, see Annex 1. The extent of the excess length depends on the jack used for restressing or releasing. The protrusions of the prestressing steel strands require a permanent corrosion protection and an adapted cap.

1.2.4 Fixed and stressing coupler

1.2.4.1 General

Anchorage of prestressing steel strands is achieved by wedges and coupler anchor heads, see Annex 1, Annex 3, Annex 4, and Annex 6.

1.2.4.2 Single plane coupler, FK or SK

The coupling is achieved by means of a coupler anchor head K. The prestressing steel strands of the first construction stage are anchored by means of wedges in machined cones, drilled in parallel. The arrangement of the cones of the first construction stage is identical to that of the anchor head of a fixed or stressing anchorage. The prestressing steel strands of the second construction stage are anchored in a circle around the cones of the first construction stage by means of wedges in machined cones, drilled at an inclination of 7 °. The wedges for the second construction stage are secured by means of holding springs and a cover plate.

1.2.4.3 Sleeve coupler, FH or SH

The coupler anchor head H is of the same basic geometry as the anchor head of the fixed or stressing anchorage. Compared to the anchor head of the fixed or stressing anchorage, the coupler anchor head H is higher and provide an external thread for the coupler sleeve. The wedges for the second construction stage are secured by means of a wedge retaining plate.

The connection between the coupler anchor heads H of the first and second construction stages is achieved by means of a coupler sleeve.

1.2.5 Moveable coupler, BK or BH

Anchorage of prestressing steel strands is achieved by wedges and coupler anchor heads, see Annex 1, Annex 3, Annex 4, and Annex 6. The moveable coupler is either a single plane coupler or a sleeve coupler in a coupler sheathing made of steel or plastic. Length and position of the coupler sheathing are for the expected elongation displacement, see Clause 2.2.4.

The coupler anchor heads and the coupler sleeve of the moveable coupler are identical to the coupler anchor heads and the coupler sleeve of the fixed or stressing coupler. The wedges for the first construction stage are secured by means of a wedge retaining plate and the wedges of the second construction stage are secured by wedge retaining plate or holding springs and cover plate.

A 100 mm long and at least 3.5 mm thick PE-HD insert is installed at the deviating point at the end of the trumpet. The insert is not required for plastic trumpets where the ducts are slipped over the plastic trumpet.

1.2.6 Layout of the anchorage recess

All bearing trumplates, anchor heads, and coupler anchor heads are placed perpendicular to the axis of the tendon, see Annex 16.

The dimensions of the anchorage recess are adapted to the prestressing jacks used. The ETA holder saves for reference information on the minimum dimensions of the anchorage recess.

The formwork for the anchorage recess should be slightly conical for ease of removal. In case of an internal anchorage fully embedded in concrete, the recess is designed so as to permit a reinforced concrete cover with the required dimensions and in any case with a thickness of at least 20 mm. In case of an exposed anchorage, see Annex 16, concrete cover on anchorage and bearing trumplate is not required. However, the exposed surfaces of bearing trumplate and steel cap are provided with corrosion protection.

1.3 Designation and range of the tendons

1.3.1 Designation

Tendon e.g.	<u>CONA CMI BT 19 06-150 1860</u>
Internal PT 🔫	·
Number of prestressing steel strands (02 to 61)	◄───┘│││
Prestressing steel strand -	
Cross-sectional area of prestressing steel strand	is (140 or 150 mm²) 🚽
Characteristic tensile strength of the prestressing	g steel strands 🔫

The tendons comprise 02 to 61 tensile elements, 7-wire prestressing steel strands according to Annex 28.

1.3.2 Range

1.3.2.1 General

Prestressing and overstressing forces are given in the corresponding standards and regulations in force at the place of use. The maximum prestressing and overstressing forces according to Eurocode 2 are listed in Annex 15.

The tendons consist of 02, 03, 04, 05, 06, 07, 08, 09, 12, 13, 15, 16, 19, 22, 24, 25, 27, 31, 37, 42, 43, 48, 55, or 61 prestressing steel strands. By omitting prestressing steel strands in the anchorages and couplers in a radially symmetrical way, also tendons with numbers of prestressing steel strands lying between the numbers given above can be installed. Any unnecessary hole either remains undrilled or is provided with a short piece of prestressing steel strand and a wedge is inserted. For coupler anchor head K the cones of the outer pitch circle, second construction stage, may be equally redistributed if prestressing steel strands are omitted. However, the overall dimensions of the coupler anchor head K remain unchanged.

With regard to dimensions and reinforcement, anchorages and couplers with omitted prestressing steel strands remain unchanged compared to anchorages and couplers with a full number of prestressing steel strands.

1.3.2.2 CONA CMI BT n06-140

7-wire prestressing steel strand

Nominal diameter 15.3	mm
Nominal cross-sectional area140	mm ²
Maximum characteristic tensile strength1860	MPa
Annex 7 lists the available tendon range for CONA CMI BT n0	6-140.

1.3.2.3 CONA CMI BT n06-150

7-wire prestressing steel strand

-	
Nominal diameter 15.7	mm
Nominal cross-sectional area150	mm ²
Maximum characteristic tensile strength1860	MPa
Annex 8 lists the available tendon range for CONA CMI BT n0	6-150.

1.4 Duct

1.4.1 Use of duct

For a bonded tendon a corrugated steel duct is used.

For special application, such as loop tendon and unbonded tendon, a smooth duct is used.

Alternatively, a corrugated or smooth plastic duct may be used as well, if permitted at the place of use. Minimum wall thicknesses are given in Table 3.

Number of prestressing steel strands	Wall thickness
n	t _{min}
—	mm
02–13	1.5
15–25	2.0
27–37	2.5
42–61	3.0

Table 2 Steel ducts, minimum wall thickness, tmin

Table 3	Plastic ducts,	minimum wa	all thickness,	\mathbf{t}_{\min}
---------	----------------	------------	----------------	---------------------

Number of	Corrugated plastic duct		Smooth pl	astic duct
strands	Maximum degree of filling	Minimum wall thickness	Maximum degree of filling	Minimum wall thickness
n	f	t _{min}	f	t _{min}
—	—	mm	—	mm
02–04	0.3	2.0	0.25	3.0
05–07	0.4	2.0	0.3	3.6
08–12	0.4	2.5	0.35	4.3
13–15	0.4	2.5	0.35	5.3
16–22	0.4	3.0	0.35	6.0
23–27	0.4	3.5	0.35	6.7
28–37	0.4	4.0	0.35	7.7
38–48	0.45	4.5	0.35	8.6
49–55	0.45	5.0	0.35	9.6
56–61	0.45	5.5	0.35	10.8

1.4.2 Degree of filling

The degree of filling, f, for a circular duct is generally between 0.35 and 0.50. However, the smaller values of degree of filling, 0.35 to 0.40, are used for long tendons or if the tensile elements are installed after concreting. The minimum radius of curvature can be defined with the equation given in Clause 1.9. Typical degrees of filling, f, and corresponding minimum radii of curvature, R_{min}, are given in Annex 9, Annex 10, and Annex 11. The degree of filling is defined as

f = ·

cross-sectional area of prestressing steel cross-sectional area of inner diameter of sheath

1.4.3 Circular steel strip sheath

Steel strip sheath in conformity with EN 523², with minimum wall thicknesses according to Table 2, is used. For diameters exceeding EN 523 the requirements are met analogous. The degree of filling, f, is according to Clause 1.4.2 and the minimum radius of curvature to Clause 1.9.

Annex 10 and Annex 11 give internal duct diameters and minimum radii of curvature in which p_{R.max} has been set to 200 kN/m and 140 kN/m respectively. Smaller radii of curvature are acceptable according to the respective standards and regulations in force at the place of use.

1.4.4 Flat corrugated steel duct

For a tendon with 2, 3, 4, or 5 prestressing steel strands, a flat duct may be used, whereas EN 523 applies accordingly. Inner dimensions of the duct and the minimum radii of curvature are defined in Annex 9.

Annex 9 gives minor and major internal flat duct diameters and minimum radii of curvature, both minor and major, in which p_{R.max} has been set to 200 kN/m and 140 kN/m respectively. Smaller radii of curvature are acceptable according to the respective standards and regulations in force at the place of use.

Pre-bent smooth circular steel duct 1.4.5

If permitted at the place of use, a smooth steel duct according to EN 10255, EN 10216-1, EN 10217-1, EN 10219-1, or EN 10305-5 is used. The degree of filling, f, conforms to Clause 1.4.2 and the minimum radius of curvature to Clause 1.9. The duct is pre-bent and free of any kinks. The minimum radii of curvature, R_{min}, is according to Clause 1.9. The minimum wall thickness of the steel duct meets the specification of Table 2.

1.5 Friction losses

For calculation of loss of prestressing force due to friction, Coulomb's law applies. Calculation of friction loss is by the equation

$$F_{x} = F_{0} \cdot e^{-\mu \cdot (\alpha + k \cdot x)}$$

Where

F_x......kNPrestressing force at a distance x along the tendon F₀.....kNPrestressing force at x = 0 m μ rad⁻¹ Friction coefficient, see Table 4 sign k rad/m......Wobble coefficient, see Table 4

Standards and other documents referred to in the European Technical Assessment are listed in Annex 32 and Annex 33.

x m........Distance along the tendon from the point where the prestressing force is equal to F_0

NOTE 1 1 rad = 1 m/m = 1

NOTE 2 As far as acceptable at the place of use, due to special measures like oiling or for a tendon layout with only few deviations the friction coefficient can be reduced by 10 to 20 %. Compared to e.g. the use of prestressing steel or sheaths with a film of rust this value increases by more than 100 %.

	Recommer	nded values	Range of values		
Duct	μ	k	μ	k	
	rad ⁻¹	rad/m	rad ⁻¹	rad/m	
Steel strip duct	0.18		0.17–0.19		
Smooth steel duct	0.18	0.005	0.16–0.24	0.004–0.007	
Corrugated plastic duct	0.12	0.005 0.10-0.14		0.004-0.007	
Smooth plastic duct	0.12		0.10–0.14		

Table 4Friction parameters

Friction loss in stressing anchorage and stressing coupler first construction stage are given in Table 5. The loss is taken into account for determination of elongation and prestressing force along the tendon.

Table 5 Friction losses in anchorages	Table 5	Friction	losses	in	anchorages
---	---------	----------	--------	----	------------

Tendon	Friction loss			
CONA CMI BT 0206 to 0406	ΔF_{s}			1.2
CONA CMI BT 0506 to 0906		%	1.1	
CONA CMI BT 1206 to 3106		ΔFs	70	0.9
CONA CMI BT 3706 to 6106			0.8	

Where

1.6 Support of tendon

Spacing of supports is between 1.0 and 1.8 m. In the region of maximum tendon curvature, a spacing of 0.8 m is applied and 0.6 m in case the minimum radius of curvature is smaller than 4.0 m. The tendons are systematically fastened in their position so that they are not displaced by placing and compacting of concrete.

1.7 Slip at anchorage and coupler

Slip at stressing and fixed anchorages and at fixed and stressing couplers, first and second construction stages, is 6 mm. Slip at moveable couplers is twice this amount. At the stressing anchorage and at the first construction stage of the stressing couplers, slip is 4 mm, provided a prestressing jack with a wedging system and a wedging force of around 25 kN per prestressing steel strand is used.

1.8 Centre spacing and edge distance for the anchorage

In general, spacing and distances are not less than given in Annex 17, Annex 18, Annex 19, Annex 20, Annex 21, Annex 22, Annex 23, and Annex 24, see also Annex 12 and Annex 13.

However, a reduction of up to 15 % of the centre spacing of tendon anchorages in one direction is permitted, but should not be less than the outside diameter of the helix and placing of additional reinforcement still is possible, see Annex 25. In this case, spacing in the perpendicular direction is increased by the same percentage. The corresponding edge distance is calculated by

$$a_e = \frac{a_c}{2} - 10 \text{ mm} + c \qquad \qquad a_{\underline{e}} = \frac{a_{\underline{c}}}{2} - 10 \text{ mm} + c$$
$$b_e = \frac{b_c}{2} - 10 \text{ mm} + c \qquad \qquad b_{\underline{e}} = \frac{b_{\underline{c}}}{2} - 10 \text{ mm} + c$$

Where

- $b_{c},\,b_{\underline{c}}.....mm....mm.$ Centre spacing in the direction perpendicular to a_{c} before and after modification
- b_e, b_e......mm.......Edge distance in the direction perpendicular to a_e before and after modification

c Concrete cover

Standards and regulations on concrete cover in force at the place of use are observed.

The minimum values for a_c , b_c , a_e , and b_e are given in Annex 17, Annex 18, Annex 19, Annex 20, Annex 21, Annex 22, Annex 23, and Annex 24.

1.9 Minimum radii of curvature

The minimum radii of curvature of the tendon, $R_{\text{min}},\, \text{given}$ in Annex 9, Annex 10, and Annex 11 correspond to

- a prestressing force of the tendon of 0.85 · Fp0.1 per prestressing steel strand Y1860S7
- a nominal diameter of the prestressing steel strand of d = 15.7 mm
- a maximum pressure under the prestressing steel strands of $p_{R, max}$ = 200 kN/m and 140 kN/m
- a concrete compressive strength of $f_{cm, 0, cube} = 23$ MPa.

In case of different tendon parameters or a different pressure under the prestressing steel strands, the calculation of the minimum radius of curvature of the tendon with circular duct can be carried out using the equation

$$R_{min} = \frac{2 \cdot F_{pm, 0} \cdot d}{d_i \cdot p_{R, max}}$$

Where

R _{min} m I	Minimum radius of curvature
•	Characteristic force at 0.1 % proof force of one single prestressing steel strand, see Annex 28
F _{pm, 0} kN F	Prestressing force of the tendon
d h	Nominal diameter of the prestressing steel strand
d _i M M	Nominal inner duct diameter
p _{R, max} kN/m I	Maximum pressure under the prestressing steel strands

For tendons with predominantly static loading, reduced minimum radii of curvature can be used. Recommended values for the pressure under the prestressing steel strands are

p_{R, max} = 140–200 kN/m for internal bonded tendons

p_{R, max} = 800 kN/m for smooth steel duct and predominantly static loading

In case of reduced minimum radius of curvature, the degree of filling, f, as defined in Clause 1.4.2, is between 0.25 and 0.30 to allow for proper tendon installation. Depending on the concrete strength at the time of stressing, additional reinforcement for splitting forces may be required in the areas of reduced minimum radius of curvature.

Standards and regulations on minimum radius of curvature or on the pressure under the prestressing steel strands in force at the place of use are observed.

1.10 Concrete strength at time of stressing

Concrete in conformity with EN 206 is used. At the time of stressing, the mean concrete compressive strength, $f_{cm, 0}$, is at least according to Table 6. The concrete test specimens are subjected to the same curing conditions as the structure.

For partial stressing with 30 % of the full prestressing force, the actual mean concrete compressive strength is at least $0.5 \cdot f_{cm, 0, cube}$ or $0.5 \cdot f_{cm, 0, cylinder}$. Intermediate values may be interpolated linearly according to Eurocode 2.

Helix, additional reinforcement, centre spacing and edge distance corresponding to the concrete compressive strengths are taken from Annex 17, Annex 18, Annex 19, Annex 20, Annex 21, Annex 22, Annex 23, and Annex 24, see also the Clauses 1.12.7 and 2.2.3.5.

Mean concrete strength		f _{cm, 0}				
Cube strength, f _{cm, 0, cube} 150 mm cube	MPa	23	28	34	38	43
Cylinder strength, f _{cm, 0, cylinder} 150 mm cylinder diameter	MPa	19	23	28	31	35

Table 6Compressive strength of concrete

Where

f_{cm, 0, cube 150}Mean concrete compressive strength at time of stressing, determined at cubes, 150 mm

 $f_{\text{cm, 0, cylinder } \varnothing \, 150}$ Mean concrete compressive strength at time of stressing, determined at cylinders, diameter 150 mm

Components

1.11 Prestressing steel strands

Only 7-wire prestressing steel strands with characteristics according to Table 7 are used, see also Annex 28.

In a single tendon only prestressing steel strands spun in the same direction are used.

In the course of preparing the European Technical Assessment, no characteristic has been assessed for prestressing steel strands. In execution, a suitable prestressing steel strand that conforms to Annex 28 and is according to the standards and regulations in force at the place of use is taken.

Maximum characteristic tensile strength 1)	\mathbf{f}_{pk}	MPa	18	60
Nominal diameter	d	mm	15.3	15.7
Nominal cross-sectional area	Ap	mm ²	140	150
Mass of prestressing steel	М	kg/m	1.093	1.172

¹⁾ Prestressing steel strands with a characteristic tensile strength below 1 860 MPa may also be used.

1.12 Anchorage and coupler

1.12.1 General

The components of anchorage and coupler are in conformity with the specifications given in Annex 2, Annex 3, Annex 4, Annex 5, and Annex 6 and the technical file³. Therein the component dimensions, materials and material identification data with tolerances are given.

1.12.2 Anchor head

The anchor head, A1 to A8, is made of steel and provides regularly arranged conical holes drilled in parallel to accommodate prestressing steel strands and wedges, see Annex 2. The back exits of the bore holes are provided with bell mouth openings or plastic ring cushions. In addition, threaded bores may be provided to attach a protection cap and springs A, see Annex 1 and Annex 6, and wedge retaining plate KS, see Annex 1 and Annex 6.

At the back of the anchor head there may be a step, for ease of centring the anchor head on the bearing trumplate.

1.12.3 Bearing trumplate

The bearing trumplate made of cast iron transmits the force via three anchorage planes to the concrete, see Annex 5. Air-vents are situated at the top and at the interface plane to the anchor head. A ventilation tube can be fitted to these air-vents. On the tendon-side end there is an inner thread to accommodate the trumpet.

1.12.4 Trumpet

The conical trumpet A, see Annex 5, and conical trumpet K, see Annex 3, is made either in steel or in PE.

The trumpet manufactured in steel has a corrugated or plain surface. In case the transition from trumpet to duct is made in steel, a 100 mm long and at least 3.5 mm thick PE-HD insert is installed at the deviating point of the prestressing steel strands.

The conical trumpet made of PE may have either a corrugated or a plain surface. At the ductside end there is a radius for the deviation of the prestressing steel strands and a smooth surface, to ensure a good transition to the duct. The opposite end is connected to the bearing trumplate or coupler anchor head K.

1.12.5 Coupler anchor head

The coupler anchor head K, see Annex 3, for the single plane coupler is made of steel and provides in the inner part, for anchorage of the prestressing steel strands of the first construction stage, the same arrangement of holes as the anchor head for the stressing or fixed anchorage. In the outer pitch circle there is an arrangement of holes with an inclination of 7 ° to accommodate the prestressing steel strands of the second construction stage. At the back of coupler anchor head K there is a step for ease of centring the coupler anchor head on the

³ The technical file of the European Technical Assessment is deposited at Österreichisches Institut für Bautechnik.

bearing trumplate. Wedge retaining plate KS, see Annex 6, and springs K, see Annex 6, with cover plate K, see Annex 3, are fastened by means of additional threaded bores.

The coupler anchor heads H1 or H2 for the sleeve coupler are made of steel and have the same basic geometry as the anchor head of the stressing or fixed anchorage, see Annex 4. Compared to the anchor head of the stressing and fixed anchorage, the coupler anchor head H is higher and provide an external thread for the coupler sleeve. At the back of the coupler anchor head H1 and H2 there is a step for ease of centring the coupler anchor head on the bearing trumplate. Wedge retaining plate KS, see Annex 6, is fastened by means of additional threaded bores.

The coupler sleeve H is a steel tube, see Annex 4, with an inner thread and is provided with ventilation holes.

Ring cushions, see Annex 4, are inserted in coupler anchor head H2.

1.12.6 Ring wedge

The ring wedge, see Annex 6, is in three pieces. Two different ring wedges are used.

- Ring wedge H in three pieces, fitted with spring ring
- Ring wedge F in three pieces, without spring ring or fitted with spring ring

Within one anchorage or coupler only one of these ring wedges is used.

The wedges of an inaccessible fixed anchorage are secured with either a wedge retaining plate or springs and a wedge retaining plate. An alternative is pre-locking each individual prestressing steel strand with $\sim 0.5 \cdot F_{pk}$ and applying a wedge retaining plate as per Clause 1.2.3.1. In couplers the wedges are secured with wedge retaining plate and cover plate.

1.12.7 Helix and additional reinforcement

Helix and additional reinforcement are made of ribbed reinforcing steel. The end of the helix on the anchorage side is welded to the following turn. The helix is placed in the tendon axis. Dimensions of helix and additional reinforcement conforms to the values specified in Annex 17, Annex 18, Annex 19, Annex 20, Annex 21, Annex 22, Annex 23, and Annex 24, see also Clause 2.2.3.5.

If required for a specific project design, the reinforcement given in Annex 17, Annex 18, Annex 19, Annex 20, Annex 21, Annex 22, Annex 23, and Annex 24 may be modified in accordance with the respective regulations in force at the place of use as well as with the relevant approval of the local authority and of the ETA holder to provide equivalent performance.

1.12.8 Protection cap

The protection cap is made of steel or plastic. It is provided with air vents and fastened with screws or threaded rods.

1.12.9 Material specifications

Annex 14 lists the material standards or specifications of the components.

1.13 Permanent corrosion protection

In the course of preparing the European Technical Assessment no characteristic has been assessed for components and materials of the corrosion protection system. In execution, all components and materials are selected according to the standards and regulations in force at the place of use.

Corrosion protection of the bonded tendon is provided by completely filling duct, anchorage, and coupler with grout according to EN 447, special grout according to EAD 160027-00-0301, or readymixed grout with an adequate composition according to standards and regulations in force at the place of use.

To protect an unbonded tendons from corrosion, ducts, couplers, and anchorages are completely filled with corrosion protection filling material as applicable at the place of use. Applicable corrosion protection filling materials are grease, wax, or an equivalent soft material. Actively circulating dry air allows for corrosion protection of a tendon as applicable at the place of use.

In case of an anchorage fully embedded in concrete, the recess is designed as to permit a reinforced concrete cover with the required dimensions and in any case with a thickness of at least 20 mm. With an exposed anchorage or with an anchorage with insufficiently thick concrete cover, the surfaces of bearing trumplate and steel cap are provided with corrosion protection.

2 Specification of the intended uses in accordance with the applicable European Assessment Document (hereinafter EAD)

2.1 Intended uses

The BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands is intended to be used for the prestressing of structures. The specific intended uses are listed in Table 8.

Line №	Use category				
Use categories according to tendon configuration and material of structure					
1 Internal bonded tendon for concrete and composite structures					
2	Internal unbonded tendon for concrete and composite structures				
Optional	Optional use category				
3	Internal tendon for cryogenic applications with anchorage outside the possible cryogenic zone				

Table 8 Intended uses

2.2 Assumptions

2.2.1 General

Concerning product packaging, transport, storage, maintenance, replacement, and repair it is the responsibility of the manufacturer to undertake the appropriate measures and to advise his clients on transport, storage, maintenance, replacement, and repair of the product as he considers necessary.

2.2.2 Packaging, transport, and storage

Advice on packaging, transport, and storage includes.

- During transport of prefabricated tendons, a minimum diameter of curvature of
 - 1.65 m for tendons up to CONA CMI BT 1206,
 - 1.80 m for tendons up to CONA CMI BT 3106,
 - 2.00 m for tendons larger than CONA CMI BT 3106, of prestressing steel strand is observed.
- Temporary protection of prestressing steel and components in order to prevent corrosion during transport from production site to job site
- Transportation, storage and handling of prestressing steel and other components in a manner as to avoid damage by mechanical or chemical impact
- Protection of prestressing steel and other components from moisture
- Keeping tensile elements separate from areas where welding operations are performed

2.2.3 Design

2.2.3.1 General

It is the responsibility of the ETA holder to ensure that all necessary information on design and installation is submitted to those responsible for the design and execution of the structures executed with "BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands".

Design of the structure permits correct installation and stressing of the tendons. The reinforcement in the anchorage zone permits correct placing and compacting of concrete.

2.2.3.2 Fixed and stressing coupler

The prestressing force at the second construction stage may not be greater than that at the first construction stage, neither during construction, nor in the final state, nor due to any load combination.

2.2.3.3 Anchorage Recess

Clearance is required for handling of the prestressing jack and for stressing. The dimensions of the anchorage recess are adapted to the prestressing jack used. The ETA holder saves for reference information on the minimum dimensions of the anchorage recesses and appropriate clearance behind the anchorage.

The anchorage recess is designed with such dimensions as to ensure the required concrete cover and at least 20 mm at the protection cap in steel in the final state.

In case of exposed anchorages concrete cover on anchorage and bearing trumplate is not required. However, the exposed surface of bearing trumplate and steel cap is provided with corrosion protection.

2.2.3.4 Maximum prestressing forces

Prestressing and overstressing forces are specified in the respective standards and regulations in force at the place of use. Annex 15 lists the maximum possible prestressing and overstressing forces according to Eurocode 2.

2.2.3.5 Centre spacing, edge distance, and reinforcement in the anchorage zone

Centre spacing, edge distance, helix, and additional reinforcement given in Annex 17, Annex 18, Annex 19, Annex 20, Annex 21, Annex 22, Annex 23, and Annex 24 are adopted, see Clause 1.8.

Verification of transfer of prestressing forces to structural concrete is not required if centre spacing and edge distance of anchorages and couplers as well as grade and dimensions of additional reinforcement, see Annex 17, Annex 18, Annex 19, Annex 20, Annex 21, Annex 22, Annex 23, and Annex 24, are conformed to. In the case of grouped anchorages, the additional reinforcement of the individual anchorages can be combined, provided appropriate anchorage is ensured. However, number, cross-sectional area and position with respect to the bearing trumplates remain unchanged.

The reinforcement of the structure is not employed as additional reinforcement. Reinforcement exceeding the required reinforcement of the structure may be used as additional reinforcement, provided appropriate placing is possible.

The forces outside the area of the additional reinforcement are verified and, if necessary, dealt with by appropriate reinforcement.

If required for a specific project design, the reinforcement given in Annex 17, Annex 18, Annex 19, Annex 20, Annex 21, Annex 22, Annex 23, and Annex 24 may be modified in accordance with the respective regulations in force at the place of use as well as with the relevant approval of the local authority and of the ETA holder to provide equivalent performance.

2.2.3.6 Tendons in masonry structures – load transfer to the structure

Post-tensioning kits are primarily used in structures made of concrete. They can, however, be used with other structural materials, e.g. in masonry structures. However, there is no particular assessment in EAD 160004-00-0301 for these applications. Hence, load transfer of stressing force from the anchorage to masonry structures is via concrete or steel members, designed according to the European Technical Assessment, especially according to the Clauses 1.8, 1.10, 1.12.7, and 2.2.3.5, or according to Eurocode 3, respectively.

The concrete or steel members have dimensions as to permit a force of $1.1 \cdot F_{pk}$ being transferred into the masonry. The verification is according to Eurocode 6 as well as to the respective standards and regulations in force at the place of use.

2.2.4 Installation

2.2.4.1 General

It is assumed that the product will be installed according to the manufacturer's instructions or – in absence of such instructions – according to the usual practice of the building professionals.

Assembly and installation of tendons is only carried out by qualified PT specialist companies with the required resources and experience in the use of multi strand internal post-tensioning systems, see CWA 14646. The respective standards and regulations in force at the place of use are considered. The company's PT site manager has a certificate, stating that she or he has been trained by the ETA holder and that she or he possesses the necessary qualifications and experience with the "BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands".

The sequence of work steps for installation of anchorage, fixed and moveable coupler is described in Annex 26 and Annex 27.

The tendons may be manufactured on site or in the factory, i.e. prefabricated tendons. The tendons are carefully handled during production, transport, storage, and installation. To avoid confusion on each site, only prestressing steel strands with one nominal diameter are used.

Bearing trumplate, anchor head, and coupler anchor head are placed perpendicular to the tendon's axis, see Annex 16. Couplers are situated in a straight tendon section. At the anchorages and couplers, the tendon layout provides a straight section over a length of at least 250 mm beyond the end of the trumpet. In case of tendons with a minimum or reduced radius of curvature after the trumpet, the following minimum straight lengths after the end of trumpet are recommended.

– Degree of filling $0.35 \le f \le 0.50$, minimum straight length = $5 \cdot d_i \ge 250$ mm

– Degree of filling $0.25 \le f \le 0.30$, minimum straight length = $8 \cdot d_i \ge 400$ mm

Where

f..... Degree of filling

di mm Nominal inner diameter of duct

Before placing the concrete, a final check of the installed tendon or duct is carried out.

In case of the single plane coupler K, the prestressing steel strands are provided with markers to be able to check the depth of engagement.

In case of a moveable coupler it is ensured by means of the corresponding position and length of the coupler sheath, that in the area of the coupler sheath and corresponding trumpet area a displacement of the moveable coupler of at least $1.15 \cdot \Delta I + 30$ mm is possible without any hindrance, where ΔI is the maximum expected displacement of the coupler at stressing.

2.2.4.2 Stressing operation

With a mean concrete compressive strength in the anchorage zone according to the values laid down in Annex 17, Annex 18, Annex 19, Annex 20, Annex 21, Annex 22, Annex 23, and Annex 24 full prestressing may be applied.

Stressing and, if applicable, wedging is carried out using a suitable prestressing jack. The wedging force corresponds to approximately 25 kN per wedge.

Elongation and prestressing forces are continuously checked during the stressing operation. The results of the stressing operation are recorded and the measured elongations compared with the prior calculated values.

After releasing the prestressing force from the prestressing jack, the tendon is pulled in and reduces the elongation by the amount of slip at the anchor head of the stressing anchorage.

Information on the prestressing equipment has been submitted to Österreichisches Institut für Bautechnik. The ETA holder keeps available information on prestressing jacks and appropriate clearance behind the anchorage.

The safety-at-work and health protection regulations shall be complied with.

2.2.4.3 Restressing

Restressing of tendons in combination with release and reuse of wedges is permitted, whereas the wedges bite into a least 15 mm of virgin strand surface and no wedge bite remains inside the final length of the tendon between anchorages.

Tendons with 7-wire prestressing steel strands that remain restressable throughout the working life of the structure. Grease, wax, or an equivalent soft material is used as filling material or circulating dry air is used as corrosion protection. Moreover, a strand protrusion at the stressing anchor remains with a length compatible with the prestressing jack used.

2.2.4.4 Exchanging tendons

Exchange of unbonded tendons is permitted, subject of acceptance at the pace of use. The specifications for exchangeable tendons are defined during the design phase.

For exchangeable tendons, wax or grease is used as filling material or circulating dry air is used as corrosion protection. Moreover, a strand protrusion remains at the stressing anchor with a length allowing safe release of the complete prestressing force.

Stressing and fixed anchorages are accessible and adequate space is provided behind the anchorages.

2.2.4.5 Filling operations

2.2.4.5.1 Grouting

Grout is injected through the inlet holes until it escapes from the outlet tubes with the same consistency. To avoid voids in the hardened grout special measures are applied for long tendons, tendon paths with distinct high points, or inclined tendons. All vents, grouting inlets, and protection caps are sealed immediately after grouting. In case of couplers K, the second stage holes, wedges and springs are checked for cleanness before and immediately after grouting the first construction stage.

The standards observed for cement grouting in prestressing ducts are EN 445, EN 446, and EN 447 or the standards and regulations in force at the place of use are applied for ready mixed grout.

2.2.4.5.2 Filling with grease, wax, and an equivalent soft material

The recommendations of the supplier are relevant for the filling material applied. The filling process with grease, wax, and an equivalent soft material follows a similar procedure as the one specified for grouting. However, a different filling procedure might be possible if permitted at the place of use.

2.2.4.5.3 Circulating dry air

Actively circulating dry air allows for corrosion protection of tendons, provided a permanent monitoring of the drying and circulation system is in place. This is in general only applicable to structures of particular importance. The respective standards and regulations in force at the place of use are observed.

2.2.4.5.4 Filling records

The results of the grouting and filling operation are recorded in detail in filling records.

2.2.4.6 Welding

Ducts may be welded.

The helix may be welded to the bearing trumplate to secure its position.

After installation of the prestressing steel strands further welding operations may not be carried out on the tendons. In case of welding operations near tendons, precautionary measures are required to avoid damage to the corrosion protection system. However, plastic components may be welded even after installation of the tendons.

2.3 Assumed working life

The European Technical Assessment is based on an assumed working life of the BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands of 100 years, provided that the BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands is subject to appropriate installation, use, and maintenance, see Clause 2.2. These provisions are based upon the current state of the art and the available knowledge and experience.

In normal use conditions, the real working life may be considerably longer without major degradation affecting the basic requirements for construction works⁴.

The indications given as to the working life of the construction product cannot be interpreted as a guarantee, neither given by the product manufacturer or his representative nor by EOTA nor by the Technical Assessment Body, but are regarded only as a means for expressing the expected economically reasonable working life of the product.

3 Performance of the product and references to the methods used for its assessment

3.1 Essential characteristics

The performances of the BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands for the essential characteristics are given in Table 9 and Table 10. In Annex 31 the combinations of essential characteristics and corresponding intended uses are listed.

N⁰	Essential characteristic	Product performance				
BE Inten Th	Product BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands Intended use The PT system is intended to be used for the prestressing of structures, Clause 2.1, Table 8, lines № 1 and 2.					
	Basic requirement for construction works 1: Mechanical resistance and stability					
1	Resistance to static load	See Clause 3.2.1.1.				

Table 9 Essential characteristics and performances of the product

The real working life of a product incorporated in a specific works depends on the environmental conditions to which that works are subject, as well as on the particular conditions of design, execution, use, and maintenance of that works. Therefore, it cannot be excluded that in certain cases the real working life of the product may also be shorter than the assumed working life.

N⁰	Essential characteristic	Product performance			
2	Resistance to fatigue	See Clause 3.2.1.2.			
3	Load transfer to the structure	See Clause 3.2.1.3.			
4	Friction coefficient	See Clause 3.2.1.4.			
5	Deviation, deflection (limits) for internal bonded and internal unbonded tendon	See Clause 3.2.1.5.			
6	Assessment of assembly	See Clause 3.2.1.6.			
7	Corrosion protection	See Clause 3.2.1.7.			
Basic requirement for construction works 2: Safety in case of fire					
8	Reaction to fire	See Clause 3.2.2.1.			
	Basic requirement for construction works	s 3: Hygiene, health and the environment			
9	Content, emission and/or release of dangerous substances	See Clause 3.2.3.1.			
	Basic requirement for construction we	orks 4: Safety and accessibility in use			
	Not relevant. No characteristic assessed.				
	Basic requirement for construction	works 5: Protection against noise			
	Not relevant. No characteristic assessed.				
	Basic requirement for construction works 6: Energy economy and heat retention				
	Not relevant. No characteristic assessed.				
	Basic requirement for construction works	s 7: Sustainable use of natural resources			
	No characteristic assessed.				

Table 10Essential characteristics and performances of the product in addition to Table 9 for an
optional use category

N⁰	Additional essential characteristic	Product performance			
Product BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands Optional use category The PT system is intended to be used for the prestressing of structures, Clause 2.1, Table 8, line № 3, Internal tendon for cryogenic applications with anchorage outside the possible cryogenic zone					
	Basic requirement for construction works 1: Mechanical resistance and stability				
10	Resistance to static load under cryogenic conditions for applications with anchorage/coupling outside the possible cryogenic zone	See Clause 3.2.4.1.			

3.2 Product performance

- 3.2.1 Mechanical resistance and stability
- 3.2.1.1 Resistance to static load

The PT system as described in the ETA meets the acceptance criteria of EAD 160004-00-0301, Clause 2.2.1. The characteristic values of maximum force, F_{pk} , of the tendon for prestressing steel strands according to Annex 28 are listed in Annex 7 and Annex 8.

3.2.1.2 Resistance to fatigue

The PT system as described in the ETA meets the acceptance criteria of EAD 160004-00-0301, Clause 2.2.2. The characteristic values of maximum force, F_{pk} , of the tendon for prestressing steel strands according to Annex 28 are listed in Annex 7 and Annex 8.

3.2.1.3 Load transfer to the structure

The PT system as described in the ETA meets the acceptance criteria of EAD 160004-00-0301, Clause 2.2.3. The characteristic values of maximum force, F_{pk} , of the tendon for prestressing steel strands according Annex 28 are listed in Annex 7 and Annex 8.

3.2.1.4 Friction coefficient

For friction losses including friction coefficient see Clause 1.5.

3.2.1.5 Deviation, deflection (limits) for internal bonded and internal unbonded tendon

For minimum radii of curvature see Clause 1.9.

3.2.1.6 Assessment of assembly

The PT system as described in the ETA meets the acceptance criteria of EAD 160004-00-0301, Clause 2.2.7.

3.2.1.7 Corrosion protection

The PT system as described in the ETA meets the acceptance criteria of EAD 160004-00-0301, Clause 2.2.13.

- 3.2.2 Safety in case of fire
- 3.2.2.1 Reaction to fire

The performance of components made of steel or cast iron is Class A1 without testing.

The performance of components of other materials has not been assessed.

- 3.2.3 Hygiene, health and the environment
- 3.2.3.1 Content, emission and/or release of dangerous substances

According to the manufacturer's declaration, the PT system does not contain dangerous substances.

SVOC and VOC

The performance of components made of steel or cast iron that are free of coating with organic material is no emission of SVOC and VOC.

The performance of components of other materials has not been assessed.

- Leachable substances

The product is not intended to be in direct contact to soil, ground water, and surface water.

3.2.4 Mechanical resistance and stability

3.2.4.1 Resistance to static load under cryogenic conditions for applications with anchorage/coupling outside the possible cryogenic zone

The PT system as described in the ETA meets the acceptance criteria of EAD 160004-00-0301, Clause 2.2.8. The characteristic values of maximum force, F_{pk} , of the tendon for prestressing steel strands according to Annex 28 are listed in Annex 7 and Annex 8.

3.3 Assessment methods

The assessment of the essential characteristics in Clause 3.1 of the BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands for the intended uses and in relation to the requirements for mechanical resistance and stability, safety in case of fire, and for hygiene, health and the environment in the sense of the basic requirements for construction works Nº 1, 2, and 3 of Regulation (EU) Nº 305/2011 has been made in accordance with Annex A of EAD 160004-00-0301, Post-tensioning kits for prestressing of structures, for

- Item 1, Internal bonded tendon
- Item 2, Internal unbonded tendon
- Item 8, Optional Use Category. Internal tendon Cryogenic applications with anchorage/coupling outside the possible cryogenic zone

3.4 Identification

The European Technical Assessment for the BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands is issued on the basis of agreed data⁵ that identify the assessed product. Changes to materials, to composition, or to characteristics of the product, or to the production process could result in these deposited data being incorrect. Österreichisches Institut für Bautechnik should be notified before the changes are introduced, as an amendment of the European Technical Assessment is possibly necessary.

4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied, with reference to its legal base

4.1 System of assessment and verification of constancy of performance

According to Commission Decision 98/456/EC the system of assessment and verification of constancy of performance to be applied to the BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands is System 1+. System 1+ is detailed in Commission Delegated Regulation (EU) № 568/2014 of 18 February 2014, Annex, point 1.1., and provides for the following items.

- (a) The manufacturer shall carry out
 - (i) factory production control;
 - (ii) further testing of samples taken at the manufacturing plant by the manufacturer in accordance with the prescribed test plan⁶.

The technical file of the European Technical Assessment is deposited at Österreichisches Institut für Bautechnik.

The prescribed test plan has been deposited with Österreichisches Institut für Bautechnik and is handed over only to the notified product certification body involved in the procedure for the assessment and verification of constancy of performance. The prescribed test plan is also referred to as control plan.

- (b) The notified product certification body shall decide on the issuing, restriction, suspension, or withdrawal of the certificate of constancy of performance of the construction product on the basis of the outcome of the following assessments and verifications carried out by that body
 - (i) an assessment of the performance of the construction product carried out on the basis of testing (including sampling), calculation, tabulated values, or descriptive documentation of the product;
 - (ii) initial inspection of the manufacturing plant and of factory production control;
 - (iii) continuing surveillance, assessment, and evaluation of factory production control;
 - (iv) audit-testing of samples taken by the notified product certification body at the manufacturing plant or at the manufacturer's storage facilities.

4.2 AVCP for construction products for which a European Technical Assessment has been issued

Notified bodies undertaking tasks under System 1+ shall consider the European Technical Assessment issued for the construction product in question as the assessment of the performance of that product. Notified bodies shall therefore not undertake the tasks referred to in Clause 4.1, point (b) (i).

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

5.1 Tasks for the manufacturer

5.1.1 Factory production control

The kit manufacturer exercises permanent internal control of the production. All the elements, procedures, and specifications adopted by the kit manufacturer are documented in a systematic manner in the form of written policies and procedures.

- Control of the incoming materials

The manufacturer checks the incoming materials to establish conformity with their specifications.

Inspection and testing

Kind and frequency of inspections, tests, and checks, conducted during production and on the final product normally include.

- Definition of the number of samples taken by the kit manufacturer
- Material properties e.g. tensile strength, hardness, surface finish, chemical composition, etc.
- Determination of the dimensions of components
- Check correct assembly
- Documentation of tests and test results

All tests are performed according to written procedures with suitable calibrated measuring devices. All results of inspections, tests, and checks are recorded in a consistent and systematic way. The basic elements of the prescribed test plan are given in Annex 29, conform to EAD 160004-00-0301, Table 3, and are specified in the quality management plan of the BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands.

The results of inspections, tests, and checks are evaluated for conformity. Shortcomings request the manufacturer to immediately implement measures to eliminate the defects.

- Control of non-conforming products

Products, which are considered as not conforming to the prescribed test plan, are immediately marked and separated from such products that do conform. Factory production control addresses control of non-conforming products.

- Complaints

Factory production control includes procedures to keep records of all complaints about the PT system.

The records are presented to the notified product certification body involved in continuous surveillance and are kept at least for ten years after the product has been placed on the market. On request, the records are presented to Österreichisches Institut für Bautechnik.

At least once a year the manufacturer audits the manufacturers of the components given in Annex 30.

5.1.2 Declaration of performance

The manufacturer is responsible for preparing the declaration of performance. When all the criteria of the assessment and verification of constancy of performance are met, including the certificate of constancy of performance issued by the notified product certification body, the manufacturer draws up the declaration of performance. Essential characteristics to be included in the declaration of performance for the corresponding intended use are given in Table 9 and Table 10. In Annex 31 the combinations of essential characteristics and corresponding intended uses are listed.

5.2 Tasks for the notified product certification body

5.2.1 Initial inspection of the manufacturing plant and of factory production control

The notified product certification body establishes that, in accordance with the prescribed test plan, the manufacturing plant, in particular personnel and equipment, and the factory production control are suitable to ensure a continuous manufacturing of the PT system according to the given technical specifications. For the most important activities, EAD 160004-00-0301, Table 4 summarises the minimum procedure.

5.2.2 Continuing surveillance, assessment, and evaluation of factory production control

The activities are conducted by the notified product certification body and include surveillance inspections. The kit manufacturer is inspected at least once a year. Factory production control is inspected and samples are taken for independent single tensile element tests.

For the most important activities, the control plan according to EAD 160004-00-0301, Table 4 summarises the minimum procedure. It is verified that the system of factory production control and the specified manufacturing process are maintained, taking account of the control plan.

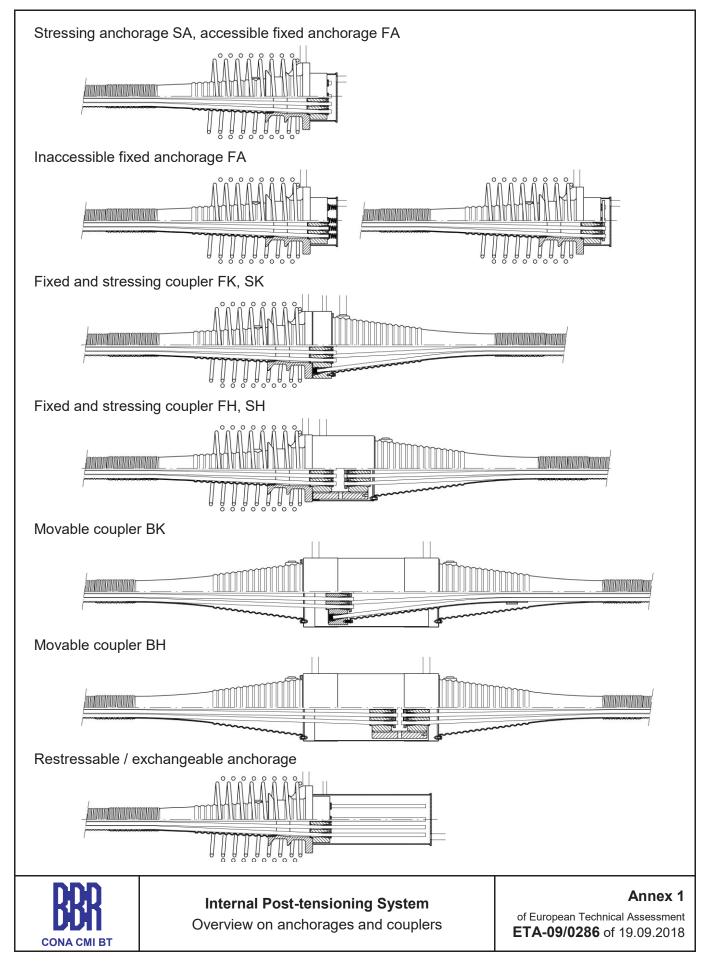
Each manufacturer of the components given in Annex 30 is audited at least once in five years. It is verified that the system of factory production control and the specified manufacturing process are maintained, taking account of the prescribed test plan.

The results of continuous surveillance are made available on demand by the notified product certification body to Österreichisches Institut für Bautechnik. When the provisions of the European Technical Assessment and the prescribed test plan are no longer fulfilled, the certificate of constancy of performance is withdrawn by the notified product certification body

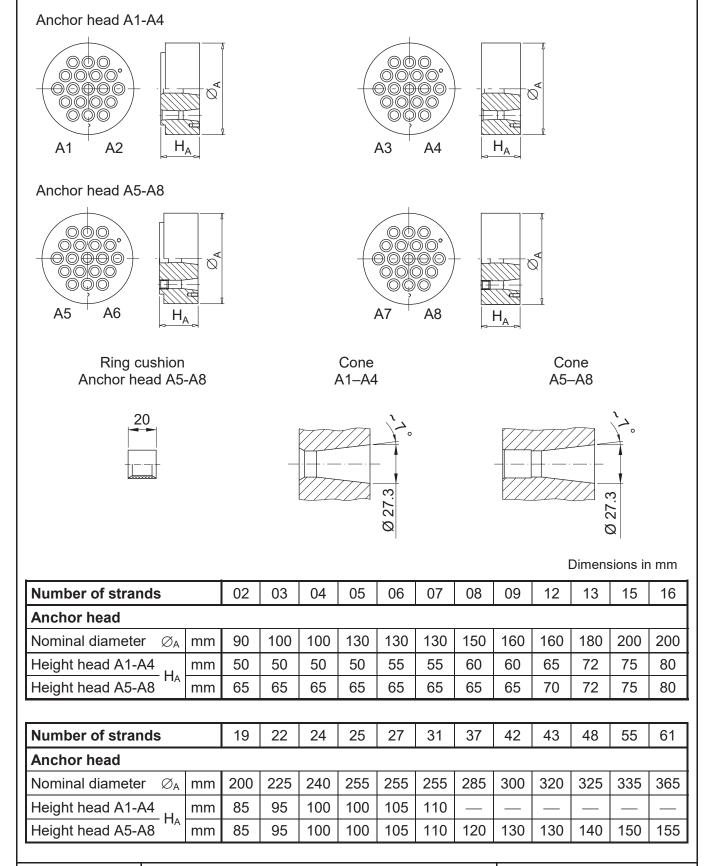
5.2.3 Audit-testing of samples taken by the notified product certification body at the manufacturing plant or at the manufacturer's storage facilities

During surveillance inspection, the notified product certification body takes samples of components of the PT system for independent testing. Audit-testing is conducted at least once a year by the notified product certification body. For the most important components, Annex 30 summarises the minimum procedures. Annex 30 conforms to EAD 160004-00-0301, Table 4. In particular, at least once a year, the notified product certification body also carries out one single

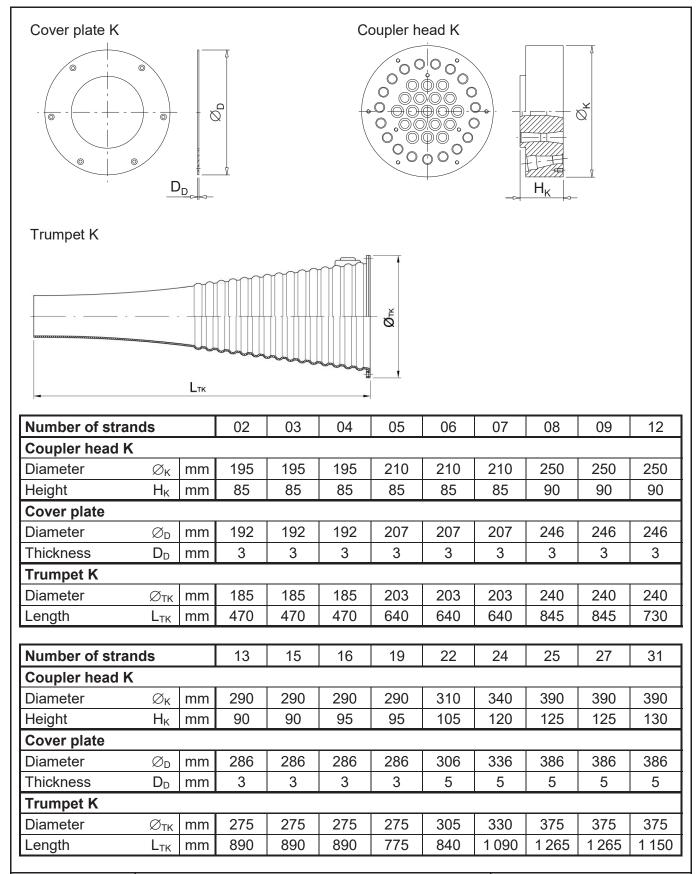
ectronic copv


tensile element test series according to EAD 160004-00-0301, Annex C.7 and Clause 3.3.4 on specimens taken from the manufacturing plant or at the manufacturer's storage facility.

Issued in Vienna on 19 September 2018 by Österreichisches Institut für Bautechnik


The original document is signed by

Rainer Mikulits Managing Director



of European Technical Assessment **ETA-09/0286** of 19.09.2018

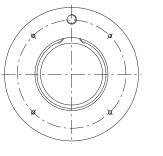
Annex 2

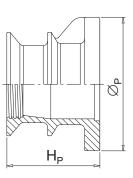
Internal Post-tensioning System

Coupler K and trumpet K

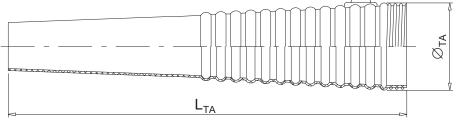
of European Technical Assessment **ETA-09/0286** of 19.09.2018

Annex 3


													Membe	
Coupler head H1						Сс	oupler	head	H2					
			H _{AH}	AH) 0 0 0		H _{AH}	AH CAH		
Ring cus Coupler he		12				I		Coupl	er slee	eve H				
20								a			-0-			
											<u>V</u>			
			<								L _H			
											I	Dimens	sions ir	ו mm
Number of strand	6		02	03	04	05	06	07	08	09	12	13	15	16
Coupler anchor h		H1 a			01	00	00	01	00	00	12	10	10	10
Nominal diameter		r	90	95	100	130	130	130	150	160	160	180	200	200
Height head H1		mm	50	50	55	55	60	65	65	70	80	80	80	85
Height head H2	Hah	mm	65	65	65	65	65	65	65	70	80	80	80	85
Coupler sleeve H		•						•	•	•	•	•		
Minimum diameter	Øн	mm	114	124	133	163	167	170	192	203	213	233	259	259
Length sleeve	L _H	mm	180	180	180	180	190	200	200	210	230	230	240	250
								1	1					
Number of strand	s		19	22	24	25	27	31	37	42	43	48	55	61
Coupler anchor h		-						1	1		1	1		r
Nominal diameter	arnothing ah	mm	200	225	240	255	255	255	285	300	320	325	335	365
Height head H1	H _{AH}	mm	95	100	100	100	105	115						
Height head H2	• •AH	mm	95	100	100	100	105	115	125	135	135	145	160	160
Coupler sleeve H								1	1		1	1		r
Minimum diameter	Øн	mm	269	296	312	327	330	338	373	395	413	425	443	475
Length sleeve		1	070	070	200	000	000	220	340	360	360	380	410	1 4 4 0
5	LH	mm	270	270	280	280	300	320	340	000	300	500	410	410


OIB-205-066/18-013

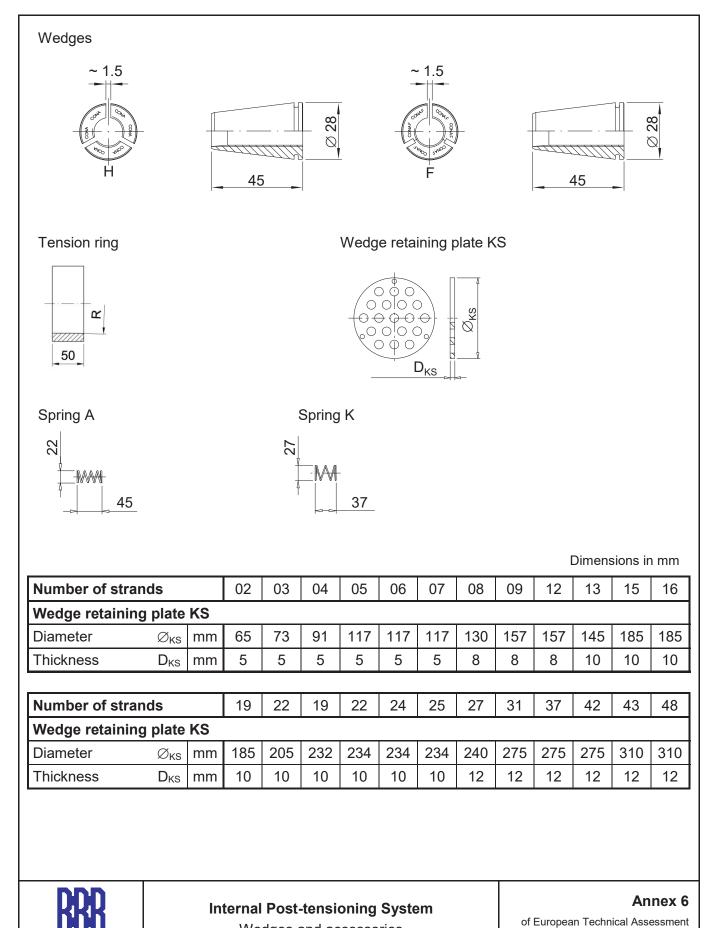
Page 32 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018



Bearing trumplate

Trumpet A

Number of stran	ds		02	03	04	05	06	07	08	09	12	13	15	16
Bearing trumplate														
Diameter	Øр	mm	130	130	130	170	170	170	195	225	225	240	280	280
Height	H_{P}	mm	120	120	120	128	128	128	133	150	150	160	195	195
Trumpet A														
Diameter	Øта	mm	72	72	72	88	88	88	127	127	127	153	153	153
Length	Lta	mm	200	200	200	328	328	328	623	623	508	694	694	694
Number of stran	ds		19	22	24	25	27	31	37	42	43	48	55	61
Bearing trumpla	te													
Diameter	Øр	mm	280	310	325	360	360	360	400	425	485	485	485	520
Height	H_{P}	mm	195	206	227	250	250	250	275	290	340	340	340	350
Trumpet A														
Diameter	\varnothing_{TA}	mm	153	170	191	191	191	191	219	229	254	254	254	278
Length	Lta	mm	579	715	866	866	866	751	1 060	1 060	1 244	1 244	1 244	1 290


Internal Post-tensioning System

Bearing trumplate and trumpet A

Annex 5

of European Technical Assessment **ETA-09/0286** of 19.09.2018

Wedges and accessories

OIB-205-066/18-013

ETA-09/0286 of 19.09.2018

CONA CMI BT

CONA CMI BT n06-140

Number of	Nominal cross-sectional	Nominal mass of	Characteristic value of maximum force of tendon				
strands	area of prestressing steel	prestressing steel	f _{pk} = 1 770 MPa	f _{pk} = 1 860 MPa			
n	Ap	М	F _{pk}	F _{pk}			
	mm ²	kg/m	kN	kN			
02	280	2.2	496	520			
03	420	3.3	744	780			
04	560	4.4	992	1 040			
05	700	5.5	1 240	1 300			
06	840	6.6	1 488	1 560			
07	980	7.7	1 736	1 820			
08	1 120	8.7	1 984	2 080			
09	1 260	9.8	2 232	2 340			
12	1 680	13.1	2 976	3 120			
13	1 820	14.2	3 224	3 380			
15	2 100	16.4	3 720	3 900			
16	2 240	17.5	3 968	4 160			
19	2 660	20.8	4 712	4 940			
22	3 080	24.0	5 456	5 720			
24	3 360	26.2	5 952	6 240			
25	3 500	27.3	6 200	6 500			
27	3 780	29.5	6 696	7 020			
31	4 340	33.9	7 688	8 060			
37	5 180	40.4	9 176	9 620			
42	5 880	45.9	10 416	10 920			
43	6 020	47.0	10 664	11 180			
48	6 720	52.5	11 904	12 480			
55	7 700	60.1	13 640	14 300			
61	8 540	66.7	15 128	15 860			

CONA CMI BT

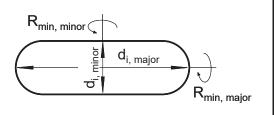
Internal Post-tensioning System

Tendon ranges for CONA CMI BT n06-140

of European Technical Assessment **ETA-09/0286** of 19.09.2018

CONA CMI BT n06-150

Number of	Nominal cross-sectional	Nominal mass of	-	stic value of rce of tendon
strands	area of prestressing steel	prestressing steel	f _{pk} = 1 770 MPa	f _{pk} = 1 860 MPa
n	Ap	М	F _{pk}	F _{pk}
	mm ²	kg/m	kN	kN
02	300	2.3	532	558
03	450	3.5	798	837
04	600	4.7	1 064	1 116
05	750	5.9	1 330	1 395
06	900	7.0	1 596	1 674
07	1 050	8.2	1 862	1 953
08	1 200	9.4	2 128	2 232
09	1 350	10.5	2 394	2 511
12	1 800	14.1	3 192	3 348
13	1 950	15.2	3 458	3 627
15	2 250	17.6	3 990	4 185
16	2 400	18.8	4 256	4 464
19	2 850	22.3	5 054	5 301
22	3 300	25.8	5 852	6 138
24	3 600	28.1	6 384	6 696
25	3 750	29.3	6 650	6 975
27	4 050	31.6	7 182	7 533
31	4 650	36.3	8 246	8 649
37	5 550	43.4	9 842	10 323
42	6 300	49.2	11 172	11 718
43	6 450	50.4	11 438	11 997
48	7 200	56.3	12 768	13 392
55	8 250	64.5	14 630	15 345
61	9 150	71.5	16 226	17 019


BBR CONA CMI BT

Internal Post-tensioning System

Tendon ranges for CONA CMI BT n06-150

Annex 8

Inner dimensions, d_i, of flat duct and minimum radius of curvature, R_{min} , for $p_{R, max}$ = 200 kN/m

Number of strands	Inner din	nensions	Radius of curvature					
n	d _{i, major}	d _{i, minor}	R _{min, major}	R _{min, minor}				
	mm	mm	m	m				
02	40	20	2.0	2.1				
03	55	20	2.0	3.1				
04	70	20	2.0	4.2				
05	85	20	2.0	5.2				

Inner dimensions, d_i, of flat duct and minimum radius of curvature, R_{min} , for $p_{\text{R,}\,\text{max}}$ = 140 kN/m

Number of strands	Inner din	nensions	Radius of	curvature
n	d _{i, major}	d _{i, minor}	R _{min, major}	$R_{min,\ minor}$
	mm	mm	m	m
02	40	20	2.0	3.0
03	55	20	2.0	4.5
04	70	20	2.0	6.0
05	85	20	2.0	7.5

ETA-09/0286 of 19.09.2018

of European Technical Assessment

Inner diame p _{R, max} = 200		circular o	duct, d _i ,	and mini	mum radi	us of cu	irvature,	R _{min} , for
Number of strands	f ≈ (0.35	f≈	0.40	f ≈ ().45	f≈	0.50
n	di	R _{min}	di	R _{min}	di	R _{min}	di	R _{min}
	mm	m	mm	m	mm	m	mm	m
02	35	2.0						
03	40	2.5						
04	45	2.9	45	2.9				
05	50	3.3	50	3.3	_			
06	55	3.6	55	3.6				
07	60	3.8	60	3.8				
08	65	4.0	60	4.4	60	4.4		
09	70	4.2	65	4.5	60	4.9	60	4.9
12	80	4.9	75	5.3	70	5.6	70	5.6
13	85	5.0	80	5.3	75	5.7	70	6.1
15	90	5.5	85	5.8	80	6.2	75	6.6
16	95	5.5	85	6.2	80	6.6	80	6.6
19	100	6.2	95	6.6	90	6.9	85	7.3
22	110	6.6	100	7.2	95	7.6	90	8.0
24	115	6.9	105	7.5	100	7.9	95	8.3
25	115	7.1	110	7.5	105	7.8	100	8.2
27	120	7.4	115	7.7	105	8.4	100	8.9
31	130	7.8	120	8.5	115	8.8	110	9.3
37	140	8.7	135	9.0	125	9.7	120	10.1
42	150	9.2	140	9.8	135	10.2	125	11.0
43	155	9.1	145	9.7	135	10.5	130	11.0
48	160	9.8	150	10.5	145	10.9	135	11.7
55	175	10.3	160	11.3	155	11.6	145	12.5
61	180	11.1	170	11.8	160	12.5	155	12.9
CONA CMI BT	Min			sioning Sys ture of circu 00 kN/m				Annex 10 ical Assessment if 19.09.2018

OIB-205-066/18-013

Inner diame p _{R, max} = 140 k		circular o	luct, d _i ,	and mini	mum radiu	us of cu	irvature,	R _{min} , for
Number of strands	f ≈ (0.35	f≈	0.40	f ≈ 0	.45	f≈	0.50
n	di	R _{min}	di	R _{min}	di	R _{min}	di	R _{min}
	mm	m	mm	m	mm	m	mm	m
02	35	2.7						
03	40	3.5						
04	45	4.2	45	4.2				
05	50	4.7	50	4.7				
06	55	5.1	55	5.1				
07	60	5.5	60	5.5				
08	65	5.8	60	6.3	60	6.3		
09	70	6.0	65	6.5	60	7.0	60	7.0
12	80	7.0	75	7.5	70	8.0	70	8.0
13	85	7.2	80	7.6	75	8.1	70	8.7
15	90	7.8	85	8.3	80	8.8	75	9.4
16	95	7.9	85	8.8	80	9.4	80	9.4
19	100	8.9	95	9.4	90	9.9	85	10.5
22	110	9.4	100	10.3	95	10.9	90	11.5
24	115	9.8	105	10.7	100	11.3	95	11.8
25	115	10.2	110	10.7	105	11.2	100	11.7
27	120	10.6	115	11.0	105	12.1	100	12.7
31	130	11.2	120	12.1	115	12.6	110	13.2
37	140	12.4	135	12.9	125	13.9	120	14.5
42	150	13.1	140	14.1	135	14.6	125	15.8
43	155	13.0	145	13.9	135	14.9	130	15.5
48	160	14.1	150	15.0	145	15.5	135	16.7
55	175	14.7	160	16.1	155	16.6	145	17.8
61	180	15.9	170	16.8	160	17.9	155	18.5
CONA CMI BT	Min			sioning Sy ture of circu 40 kN/m				Annex 11 ical Assessment of 19.09.2018

OIB-205-066/18-013

Minimum centre spacing of tendon anchorages

Tendon			Minimum	centre spac	ing $a_c = b_c$	
f _{cm, 0, cube, 150}	MPa	23	28	34	38	43
$f_{cm,\ 0,\ cylinder,\ \varnothing\ 150}$	MPa	19	23	28	31	35
CONA CMI BT 0206	mm	210	210	210	210	205
CONA CMI BT 0306	mm	210	210	210	210	205
CONA CMI BT 0406	mm	235	215	210	210	205
CONA CMI BT 0506	mm	265	250	250	250	250
CONA CMI BT 0606	mm	290	265	250	250	250
CONA CMI BT 0706	mm	310	285	260	255	255
CONA CMI BT 0806	mm	330	305	280	275	275
CONA CMI BT 0906	mm	350	320	310	310	310
CONA CMI BT 1206	mm	405	370	340	325	310
CONA CMI BT 1306	mm	425	390	355	340	325
CONA CMI BT 1506	mm	455	415	380	365	365
CONA CMI BT 1606	mm	470	430	390	375	365
CONA CMI BT 1906	mm	510	465	425	410	390
CONA CMI BT 2206	mm	550	500	460	440	420
CONA CMI BT 2406	mm	575	525	480	460	435
CONA CMI BT 2506	mm	590	535	485	465	450
CONA CMI BT 2706	mm	610	555	505	485	460
CONA CMI BT 3106	mm	650	595	545	520	495
CONA CMI BT 3706	mm		680	680	680	680
CONA CMI BT 4206	mm		735	735	735	735
CONA CMI BT 4306	mm	_	755	755	755	755
CONA CMI BT 4806	mm		805	805	805	805
CONA CMI BT 5506	mm	_	875	875	875	875
CONA CMI BT 6106	mm		940	940	940	940

Internal Post-tensioning System

Minimum centre spacing

Annex 12

Minimum edge distance of tendon anchorages

Tendon			Minimum	centre spac	ing $a_c = b_c$	
f _{cm, 0, cube, 150}	MPa	23	28	34	38	43
$f_{\text{cm, 0, cylinder, } arnothing}$ 150	MPa	19	23	28	31	35
CONA CMI BT 0206	mm	95 + c	95 + c	95 + c	95 + c	95 + c
CONA CMI BT 0306	mm	95 + c	95 + c	95 + c	95 + c	95 + c
CONA CMI BT 0406	mm	110 + c	100 + c	95 + c	95 + c	95 + c
CONA CMI BT 0506	mm	125 + c	115 + c	115 + c	115 + c	115 + 0
CONA CMI BT 0606	mm	135 + c	125 + c	115 + c	115 + c	115 + 0
CONA CMI BT 0706	mm	145 + c	135 + c	120 + c	120 + c	120 + 0
CONA CMI BT 0806	mm	155 + c	145 + c	130 + c	130 + c	130 + 0
CONA CMI BT 0906	mm	165 + c	150 + c	145 + c	145 + c	145 + 0
CONA CMI BT 1206	mm	195 + c	175 + c	160 + c	155 + c	145 + 0
CONA CMI BT 1306	mm	205 + c	185 + c	170 + c	160 + c	155 + 0
CONA CMI BT 1506	mm	220 + c	200 + c	180 + c	175 + c	175 + 0
CONA CMI BT 1606	mm	225 + c	205 + c	185 + c	180 + c	175 + 0
CONA CMI BT 1906	mm	245 + c	225 + c	205 + c	195 + c	185 + 0
CONA CMI BT 2206	mm	265 + c	240 + c	220 + c	210 + c	200 + 0
CONA CMI BT 2406	mm	280 + c	255 + c	230 + c	220 + c	210 + 0
CONA CMI BT 2506	mm	285 + c	260 + c	235 + c	225 + c	215 + 0
CONA CMI BT 2706	mm	295 + c	270 + c	245 + c	235 + c	220 + 0
CONA CMI BT 3106	mm	315 + c	290 + c	265 + c	250 + c	240 + 0
CONA CMI BT 3706	mm	_	330 + c	330 + c	330 + c	330 + 0
CONA CMI BT 4206	mm	_	360 + c	360 + c	360 + c	360 + 0
CONA CMI BT 4306	mm	—	370 + c	370 + c	370 + c	370 + 0
CONA CMI BT 4806	mm	—	395 + c	395 + c	395 + c	395 + 0
CONA CMI BT 5506	mm	_	430 + c	430 + c	430 + c	430 + 0
CONA CMI BT 6106	mm		460 + c	460 + c	460 + c	460 + 0

c..... Concrete cover in mm

Internal Post-tensioning System

Minimum edge distance

Annex 13

of European Technical Assessment **ETA-09/0286** of 19.09.2018

Material specifications

1
Standard / Specification
EN 10083-1 EN 10083-2
EN 10083-1 EN 10083-2
EN 10083-1 EN 10083-2
EN 1561 EN 1563
EN 10210-1
EN 10025-2
EN ISO 17855-1
EN ISO 17855-1 EN ISO 19069-1
EN 10210-1
EN 10277-2 EN 10084
EN 10270-1
Ribbed reinforcing steel $R_e \geq 500 \mbox{ MPa}$
Ribbed reinforcing steel $R_e \geq 500 \mbox{ MPa}$
EN 523

CONA CMI BT

Internal Post-tensioning System Material specifications Annex 14

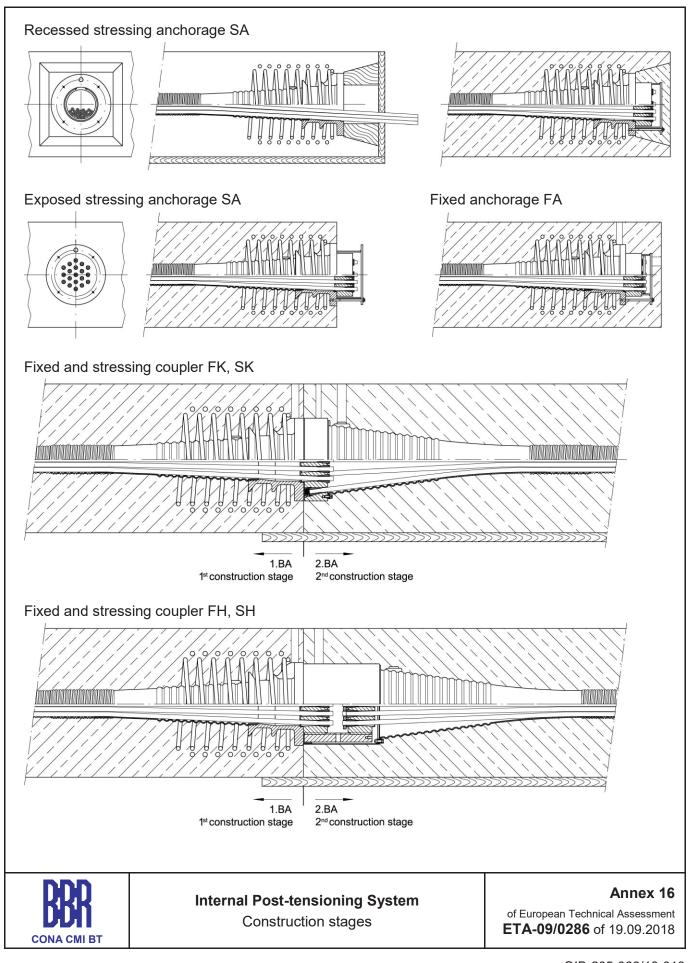
Maximum prestr	essing a	and over	stressing	g forces					
		Maxin	num prest 0.9 ·	tressing f F _{p0.1}	orce ¹⁾	Maximu	n overstr 0.95 ·	essing foi F _{p0.1}	rce ^{1), 2)}
					CONA	CMI BT			
Designation	n	n06-	-140	n06-	-150	n06-	140	n06-	-150
Characteristic tensile strength	MPa	1 770	1 860	1 770	1 860	1 770	1 860	1 770	1 860
		kN	kN	kN	kN	kN	kN	kN	kN
	02	392	412	421	443	414	435	445	467
	03	589	618	632	664	621	653	667	701
	04	785	824	842	886	828	870	889	935
	05	981	1 0 3 1	1 053	1 107	1 036	1 088	1 1 1 2	1 169
	06	1 177	1 237	1 264	1 328	1 243	1 305	1 334	1 402
	07	1 373	1 443	1 474	1 550	1 450	1 523	1 556	1 636
	08	1 570	1 649	1 685	1771	1 657	1 740	1778	1 870
	09	1 766	1 855	1 895	1 993	1 864	1 958	2 001	2 103
	12	2 354	2 473	2 527	2 657	2 485	2611	2 668	2 804
	13	2 551	2679	2 7 38	2878	2 692	2 828	2 890	3 0 3 8
	15	2 943	3 092	3 159	3 321	3 107	3 263	3 335	3 506
n Number	16	3 139	3 298	3 370	3 542	3 314	3 481	3 557	3 7 3 9
of strands	19	3 728	3916	4 001	4 207	3 935	4 133	4 224	4 4 4 0
orollarido	22	4 3 1 6	4 534	4 633	4 871	4 556	4 786	4 891	5 141
	24	4 709	4 946	5 054	5 3 1 4	4 970	5 221	5 335	5 609
	25	4 905	5 153	5 265	5 535	5 178	5 439	5 558	5 843
	27	5 297	5 565	5 686	5978	5 592	5 874	6 002	6 310
	31	6 082	6 389	6 529	6 863	6 420	6 744	6 891	7 245
	37	7 259	7 626	7 792	8 192	7 663	8 049	8 225	8 647
	42	8 2 4 0	8 656	8 845	9 299	8 698	9 137	9 337	9815
	43	8 4 3 7	8 862	9 056	9 520	8 905	9 355	9 559	10 049
	48	9418	9 893	10 109	10 627	9 941	10 442	10 670	11218
	55	10 791	11 336	11 583	12 177	11 391	11 965	12 227	12 854
	61	11 968	12 572	12 847	13 505	12 633	13 271	13 560	14 256

¹⁾ The given values are maximum values according to Eurocode 2. The actual values are taken from the standards and regulations in force at the place of use. Conformity with the stabilisation and crack width criteria in the load transfer test has been verified to a load level of 0.80 · F_{pk}.

²⁾ Overstressing is permitted if the force in the prestressing jack is measured to an accuracy of ± 5 % of the final value of the prestressing force.

Where

- F_{pk}.....Characteristic value of maximum force of tendon
- $F_{\text{p0.1}}...Characteristic value of 0.1\%$ proof force of the tendon


Internal Post-tensioning System

Maximum prestressing and overstressing forces

Annex 15

of European Technical Assessment **ETA-09/0286** of 19.09.2018

OIB-205-066/18-013

Stressing ar	nd fixed ancho	orag	e / co	puple	er		C	Centr	e sp	acin	g ano	d edg	ge di	stan	се	_		
		-	b _e =	a'e + b'e + Cone	С	COVE												
BBR VT CONA	A CMI BT					0206					0306					0406		
Strand arrange	ment)			(00)			(80)	
7-wire	prestressing st		trand laximu										sectio	nal ar	rea 15	50 mn	n²	
						Т	endo	n										
Cross-sectiona	larea	Ap	mm ²			300					450					600		
Char. value of	maximum force	F _{pk}	kN			558					837					1 1 1 6		
Char. value of force	0.1% proof	F _{p0.1}	kN			492					738			984				
Max. prestress	ing force 0.90 · I	F _{p0.1}	kN			443					664					886		
Max. overstres	sing force 0.95	F _{p0.1}	kN			467					701					935		
Minin	num concrete s	ropo	(th / Ц	oliv /	Add	itiona	Iroin	foros	mont		atro o	naoir		d oda	o dio	topor		
Minimum con		renç		enx /	Auu	luona	Tem	TOICE	mem		ille 5	ματιι	iy all	u eug	e uis	lance	;	
Cube	fcm, 0, cub	e, 150	MPa	23	28	34	38	43	23	28	34	38	43	23	28	34	38	43
Cylinder	fcm, 0, cylinder, s		MPa	19	23	28	31	35	19	23	28	31	35	19	23	28	31	35
Helix		-																I
<u> </u>					100				160	160	160	160	155	180	160	160	160	15
Outer diameter			mm	160	160	160	160	155	100								4.0	10
Outer diameter Bar diameter			mm mm	160 10	160 10	160 10	160 10	155 10	100	10	10	10	10	10	10	10	10	
_									10	10	10	10 185	10 185	10 185	10 185	-	-	
Bar diameter			mm	10	10	10	10	10	10	10	10	-	-		-	-	-	18
Bar diameter Length approxi	mately		mm mm	10 185	10 185	10 185	10 185	10 185	10 185	10 185	10 185	185	185	185	185	185	185	18 45
Bar diameter Length approxi Pitch	mately	E	mm mm	10 185 45	10 185 45	10 185 45	10 185 45	10 185 45	10 185 45	10 185 45	10 185 45	185 45	185 45	185 45	185 45	185 45	185 45	18 45 5
Bar diameter Length approxi Pitch Number of pitcl	mately hes	E	mm mm mm	10 185 45 5	10 185 45 5	10 185 45 5	10 185 45 5	10 185 45 5	10 185 45 5	10 185 45 5	10 185 45 5	185 45 5	185 45 5	185 45 5	185 45 5	185 45 5	185 45 5	18 45 5
Bar diameter Length approxi Pitch Number of pitch Distance	mately hes nforcement	E	mm mm mm	10 185 45 5	10 185 45 5	10 185 45 5	10 185 45 5	10 185 45 5	10 185 45 5	10 185 45 5	10 185 45 5	185 45 5	185 45 5	185 45 5	185 45 5	185 45 5	185 45 5	18 45 5 15
Bar diameter Length approxi Pitch Number of pitch Distance Additional rein	mately hes nforcement	E	mm mm — mm	10 185 45 5 15	10 185 45 5 15	10 185 45 5 15	10 185 45 5 15	10 185 45 5 15	10 185 45 5 15	10 185 45 5 15	10 185 45 5 15	185 45 5 15	185 45 5 15	185 45 5 15	185 45 5 15	185 45 5 15	185 45 5 15	
Bar diameter Length approxi Pitch Number of pitcl Distance Additional rein Number of stirr	mately hes nforcement	E	mm mm — mm	10 185 45 5 15 3	10 185 45 5 15 3	10 185 45 5 15 3	10 185 45 5 15 3	10 185 45 5 15 3	10 185 45 5 15 4	10 185 45 5 15 3	10 185 45 5 15 4	185 45 5 15 4	185 45 5 15 3	185 45 5 15 3	185 45 5 15 3	185 45 5 15 4	185 45 5 15 4	18 45 5 15
Bar diameter Length approxi Pitch Number of pitch Distance Additional rein Number of stirr Bar diameter	mately hes nforcement ups	E	mm mm — mm mm mm	10 185 45 5 15 3 8	10 185 45 5 15 3 8	10 185 45 5 15 3 8	10 185 45 5 15 3 8	10 185 45 5 15 3 8	10 185 45 5 15 4 8	10 185 45 5 15 3 10	10 185 45 5 15 4 8	185 45 5 15 4 8	185 45 5 15 3 10	185 45 5 15 3 12	185 45 5 15 3 12	185 45 5 15 4 4 10	185 45 5 15 4 10	18 45 5 15 3 12 55
Bar diameter Length approxi Pitch Number of pitch Distance Additional rein Number of stirr Bar diameter Spacing	mately hes nforcement ups anchor plate		mm mm — mm mm mm mm	10 185 45 15 3 3 8 55	10 185 45 15 3 3 8 55	10 185 45 5 15 3 8 55	10 185 45 5 15 3 8 55	10 185 45 15 3 3 8 55	10 185 45 5 15 4 8 45	10 185 45 15 3 10 55	10 185 45 15 4 4 8 45	185 45 5 15 4 4 8 45	185 45 5 15 3 10 55	185 45 5 15 3 12 60	185 45 5 15 3 12 55	185 45 5 15 4 4 10 45	185 45 5 15 4 10 45	18 45 5 15 3 12 55 30
Bar diameter Length approxi Pitch Number of pitch Distance Additional rein Number of stirr Bar diameter Spacing Distance from a Minimum outer	mately hes nforcement ups anchor plate	F × B	mm mm — mm mm mm mm mm mm	10 185 5 15 3 8 55 30	10 185 45 5 15 3 8 55 30	10 185 45 5 15 3 8 55 30	10 185 45 5 15 3 3 8 55 30	10 185 45 5 15 3 8 55 30	10 185 45 5 15 4 4 8 45 30	10 185 45 5 15 3 10 55 30	10 185 5 15 4 4 8 45 30	185 45 5 15 4 4 8 45 30	185 45 5 15 3 10 55 30	185 45 5 15 3 12 60 30	185 45 5 15 3 12 55 30	185 45 5 15 4 4 10 45 30	185 45 5 15 4 10 45 30	188 45 5 15 3 12 55 30
Bar diameter Length approxi Pitch Number of pitch Distance Additional rein Number of stirr Bar diameter Spacing Distance from a Minimum outer	mately hes nforcement ups anchor plate dimensions B g and edge dist	F × B	mm mm — mm mm mm mm mm mm	10 185 45 5 15 3 8 55 30 190	10 185 45 5 15 3 8 55 30	10 185 45 5 15 3 8 55 30 190	10 185 45 5 15 3 8 55 30 190	10 185 45 5 15 3 8 55 30	10 185 45 5 15 4 8 45 30 190	10 185 45 5 15 3 10 55 30 190	10 185 45 5 15 4 4 8 45 30 190	185 45 5 15 4 4 8 45 30	185 45 5 15 3 10 55 30 190	185 45 5 15 3 12 60 30	185 45 5 15 3 12 55 30 200	185 45 5 15 4 10 45 30 190	185 45 5 15 4 10 45 30	183 45 5 15 3 12 55 30 19

Internal Post-tensioning System

Annex 17

Minimum concrete strength – Helix – Additional reinforcement – Centre spacing and edge distance

of European Technical Assessment **ETA-09/0286** of 19.09.2018

Stressing and fixed anchorage	ge / c	ouple	er		C	Centr	e sp	acin	g an	d ed	ge di	istan	се			
	b _e =	a¦e + b'e + Con∘	с	COVE						-	b b b b c					
BBR VT CONA CMI BT				0506					0606					0706		
Strand arrangement																
7-wire prestressing steel	strand Maxim										sectio	onal a	rea 1	50 mr	n²	
				т	endo	n										
Cross-sectional area A	mm ²			750	•••••				900					1 0 5 0		
Char. value of maximum force F _{pl}	_			1 395					1674			1 953				
Char. value of 0.1% proof force $F_{p0.}$				1 2 3 0					1476				1 722			
Max. prestressing force $0.90 \cdot F_{p0.2}$	kN			1 107					1 328					1 5 50		
Max. overstressing force $0.95 \cdot F_{p0.2}$				1 169					1 4 0 2					1 6 3 6		
Minimum concrete stren	gth / F	lelix /	Add	itiona	l rein	force	ment	t / Cei	ntre s	paciı	ng an	d edg	ge dis	tance		
Minimum concrete strength					ıl rein	force	ment	t / Cei	ntre s	paciı	ng an	d edç	ge dis	stance		
			Addi 28	itiona 34	I rein 38	force 43	ement 23	28	ntre s 34	paciı 38	ng an 43	d edç 23	ge dis 28	stance 34		4
Minimum concrete strength	MPa				r		-	r					1	ı	9	
Minimum concrete strength Cube fcm, 0, cube, 150 Cylinder fcm, 0, cylinder, ∅ 150 Helix Cube	MPa MPa	23 19	28 23	34 28	38 31	43 35	23 19	28 23	34 28	38 31	43 35	23 19	28 23	34 28	38 31	3
Minimum concrete strength Cube fcm, 0, cube, 150 Cylinder fcm, 0, cylinder, ⊘ 150	MPa MPa	23 19 200	28 23 195	34 28 195	38 31 195	43 35 195	23 19 200	28 23 200	34 28 195	38 31 195	43 35 195	23 19 230	28 23 200	34 28 200	38 31 200	3 20
Minimum concrete strength Cube fcm, 0, cube, 150 Cylinder fcm, 0, cylinder, ⊘ 150 Helix Outer diameter Bar diameter 6	MPa MPa	23 19 200 10	28 23 195 10	34 28 195 10	38 31 195 10	43 35 195 10	23 19 200 10	28 23 200 10	34 28 195 10	38 31 195 10	43 35 195 10	23 19 230 12	28 23 200 12	34 28 200 12	38 31 200 12	3 20
Minimum concrete strength Cube fcm, 0, cube, 150 Cylinder fcm, 0, cylinder, ∅ 150 Helix Outer diameter Bar diameter Length approximately	MPa MPa mm	23 19 200 10 230	28 23 195 10 205	34 28 195 10 205	38 31 195 10 245	43 35 195 10 230	23 19 200 10 253	28 23 200 10 230	34 28 195 10 205	38 31 195 10 245	43 35 195 10 230	23 19 230 12 254	28 23 200 12 256	34 28 200 12 231	38 31 200 12 231	3 20 1 23
Minimum concrete strength Cube fcm, 0, cube, 150 Cylinder fcm, 0, cylinder, ∅ 150 Helix Outer diameter Bar diameter Length approximately Pitch Pitch	MPa MPa mm mm	23 19 200 10 230 45	28 23 195 10 205 50	34 28 195 10 205 50	38 31 195 10 245 60	43 35 195 10 230 50	23 19 200 10 253 45	28 23 200 10 230 50	34 28 195 10 205 50	38 31 195 10 245 60	43 35 195 10 230 50	23 19 230 12 254 45	28 23 200 12 256 50	34 28 200 12 231 50	38 31 200 12 231 50	3 20 1 23 5
Minimum concrete strengthCubefcm, 0, cube, 150Cylinderfcm, 0, cylinder, ⊘ 150HelixCubeOuter diameterCubeBar diameterCubeLength approximatelyPitchNumber of pitchesCube	MPa MPa mm mm mm mm	23 19 200 10 230 45 6	28 23 195 10 205 50 5	34 28 195 10 205 50 50	38 31 195 10 245 60 5	43 35 195 10 230 50 5	23 19 200 10 253 45 6	28 23 200 10 230 50 5	34 28 195 10 205 50 50	38 31 195 10 245 60 5	43 35 195 10 230 50 5	23 19 230 12 254 45 6	28 23 200 12 256 50 6	34 28 200 12 231 50 5	38 31 200 12 231 50 5	3 20 1 23 5
Minimum concrete strengthCubefcm, 0, cube, 150Cylinderfcm, 0, cylinder, ⊘ 150HelixCubeOuter diameterBar diameterLength approximatelyPitchNumber of pitchesDistanceE	MPa MPa mm mm mm mm	23 19 200 10 230 45	28 23 195 10 205 50	34 28 195 10 205 50	38 31 195 10 245 60	43 35 195 10 230 50	23 19 200 10 253 45	28 23 200 10 230 50	34 28 195 10 205 50	38 31 195 10 245 60	43 35 195 10 230 50	23 19 230 12 254 45	28 23 200 12 256 50	34 28 200 12 231 50	38 31 200 12 231 50	3 20 1 23 5
Minimum concrete strengthCubefcm, 0, cube, 150Cylinderfcm, 0, cylinder, ∅ 150HelixOuter diameterBar diameterLength approximatelyPitchNumber of pitchesDistanceAdditional reinforcement	MPa MPa mm mm mm mm mm mm	23 19 200 10 230 45 6 18	28 23 195 10 205 50 5 18	34 28 195 10 205 50 5 18	38 31 195 10 245 60 5 18	43 35 195 10 230 50 5 18	23 19 200 10 253 45 6 18	28 23 200 10 230 50 5 18	34 28 195 10 205 50 5 18	 38 31 195 10 245 60 5 18 	43 35 195 10 230 50 5 5 18	23 19 230 12 254 45 6 18	28 23 200 12 256 50 6 18	34 28 200 12 231 50 5 18	38 31 200 12 231 50 5 18	3 2(1 23 5 1
Minimum concrete strengthCubefcm, 0, cube, 150Cylinderfcm, 0, cylinder, ⊘ 150HelixCubeOuter diameterCubeBar diameterCubeLength approximatelyPitchNumber of pitchesCubeDistanceEAdditional reinforcementNumber of stirrups	MPa MPa Mm mm	23 19 200 10 230 45 6 18	28 23 195 10 205 50 5 18 4	34 28 195 10 205 50 5 5 18	38 31 195 10 245 60 5 18 3	43 35 195 10 230 50 5 18 18	23 19 200 10 253 45 6 18	28 23 200 10 230 50 5 18 4	34 28 195 10 205 50 5 18	38 31 195 10 245 60 5 18	43 35 195 10 230 50 50 5 18	23 19 230 12 254 45 6 18	28 23 200 12 256 50 6 18 4	34 28 200 12 231 50 5 18 4	38 31 2000 12 2311 500 5 18	3 20 1 23 5 5 1
Minimum concrete strength Cube fcm, 0, cube, 150 Cylinder fcm, 0, cylinder, ⊘ 150 Helix Outer diameter Bar diameter E Length approximately Pitch Number of pitches Distance Distance E Additional reinforcement Number of stirrups Bar diameter ²) E	MPa MPa MPa mm mm mm mm mm mm mm	23 19 200 10 230 45 6 18 4 12	28 23 195 10 205 50 5 5 18 4 12	34 28 195 10 205 50 5 18 4 12	38 31 195 10 245 60 5 18 3 12	43 35 195 10 230 50 5 18 18 4	23 19 200 10 253 45 6 18 5 12	28 23 200 10 230 50 5 18 4 12	34 28 195 10 205 50 50 5 18 18	38 31 195 10 245 60 5 18 18 3 12	43 35 195 10 230 50 5 18 18 4 12	23 19 230 12 254 45 6 18 5 14	28 23 200 12 256 50 6 18 4 4	34 28 200 12 231 50 5 18 4 12	38 31 2000 12 231 50 5 18 4 14	1: 23 50 50 1: 4 1:
Minimum concrete strengthCubefcm, 0, cube, 150Cylinderfcm, 0, cylinder, ∅ 150HelixOuter diameterOuter diameterEBar diameterELength approximatelyPitchNumber of pitchesEDistanceEAdditional reinforcementNumber of stirrupsBar diameter ²)Spacing	MPa MPa MPa mm mm mm mm mm mm mm	23 19 200 10 230 45 6 18 18 4 12 55	28 23 195 10 205 50 5 18 4 12 50	34 28 195 10 205 50 5 18 4 12 50	38 31 195 10 245 60 5 18 3 12 65	43 35 195 10 230 50 5 18 4 12 50	23 19 200 10 253 45 6 18 5 12 50	28 23 200 10 230 50 5 18 4 12 55	34 28 195 10 205 50 5 18 5 18 5 12 45	38 31 195 10 245 60 5 18 3 12 65	43 35 195 10 230 50 5 18 4 12 50	23 19 230 12 254 45 6 18 5 14 55	28 23 200 12 256 50 6 18 4 4 14 60	34 28 200 12 231 50 5 18 4 12 55	38 31 200 12 231 50 5 18 4 14 55	3 20 1 23 5 5 5 1 1 1 23 5 5 1 1 1 5
Minimum concrete strengthCubefcm, 0, cube, 150Cylinderfcm, 0, cylinder, ∅ 150HelixOuter diameterBar diameterLength approximatelyPitchNumber of pitchesDistanceAdditional reinforcementNumber of stirrupsBar diameter ²)SpacingDistance from anchor plate	MPa MPa MPa mm mm mm mm mm mm mm mm mm	23 19 200 10 230 45 6 18 4 12 55 33	28 23 195 10 205 50 5 18 4 12 50 33	34 28 195 10 205 50 5 18 4 12 50 33	38 31 195 10 245 60 5 18 3 12 65 33	43 35 195 10 230 50 5 18 4 12 50 33	23 19 200 10 253 45 6 18 5 12 50 33	28 230 10 230 50 5 18 4 12 55 33	34 28 195 10 205 50 5 18 5 18 5 12 45 33	38 31 195 10 245 60 5 18 3 3 12 65 33	43 35 195 10 230 50 5 18 4 12 50 33	230 12 254 45 6 18 5 14 55 33	28 23 200 12 256 50 6 18 4 4 14 60 33	34 28 200 12 231 50 5 18 4 12 55 33	38 31 2000 12 231 50 5 18 4 14 55 33	3 20 1 23 5 5 5 1 1 1 5 3
Minimum concrete strength Cube fcm, 0, cube, 150 Cylinder fcm, 0, cylinder, ⊘ 150 Helix Column (Column) Outer diameter 0 Bar diameter 0 Length approximately 0 Pitch 0 Number of pitches 0 Distance E Additional reinforcement 0 Number of stirrups 0 Bar diameter ²⁾ 20 Spacing 0 Distance from anchor plate F Minimum outer dimensions B × E	MPa MPa MPa mm mm mm mm mm mm mm mm mm mm mm mm mm	23 19 200 10 230 45 6 18 18 4 12 55	28 23 195 10 205 50 5 18 4 12 50	34 28 195 10 205 50 5 18 4 12 50	38 31 195 10 245 60 5 18 3 12 65	43 35 195 10 230 50 5 18 4 12 50	23 19 200 10 253 45 6 18 5 12 50	28 23 200 10 230 50 5 18 4 12 55	34 28 195 10 205 50 5 18 5 18 5 12 45	38 31 195 10 245 60 5 18 3 12 65	43 35 195 10 230 50 5 18 4 12 50	23 19 230 12 254 45 6 18 5 14 55	28 23 200 12 256 50 6 18 4 4 14 60 33	34 28 200 12 231 50 5 18 4 12 55	38 31 200 12 231 50 5 18 4 14 55	3 20 1 23 5 5 5 1 1 1 5 3
Minimum concrete strengthCube $f_{cm, 0, cube, 150}$ Cylinder $f_{cm, 0, cylinder, Ø 150}$ Helix $f_{cm, 0, cylinder, Ø 150}$ Outer diameter $g_{cm, 0, cylinder, Ø 150}$ Bar diameter $g_{cm, 0, cylinder, Ø 150}$ Length approximately $g_{cm, 0, cylinder, Ø 150}$ Pitch $g_{cm, 0, cylinder, Ø 150}$ Number of pitches $g_{cm, 0, cylinder, Ø 150}$ Distance $g_{cm, 0, cylinder, Ø 150}$ Additional reinforcement $g_{cm, 0, cylinder, Ø 150}$ Number of stirrups $g_{cm, 0, cylinder, Ø 150}$ Bar diameter $^{2)}$ $g_{cm, 0, cylinder, Ø 150}$ Spacing $g_{cm, 0, cylinder, Ø 150}$ Distance from anchor plate $g_{cm, 0, cylinder, Ø 150}$ Minimum outer dimensions $g_{cm, 0, cylinder, Ø 150}$	MPa MPa MPa mm mm mm mm mm mm mm mm mm mm mm mm mm	23 19 200 10 230 45 6 18 4 12 55 33	28 23 195 10 205 50 5 18 4 12 50 33	34 28 195 10 205 50 5 18 4 12 50 33	38 31 195 10 245 60 5 18 3 12 65 33 230	43 35 195 10 230 50 5 18 4 12 50 33	23 19 200 10 253 45 6 18 5 12 50 33 270	28 230 10 230 50 5 18 4 12 55 33	34 28 195 10 205 50 5 18 5 12 45 33 230	38 31 195 10 245 60 5 18 3 3 12 65 33	43 35 195 10 2300 50 5 18 4 12 50 33 2300	230 12 254 45 6 18 5 14 55 33	28 23 200 12 256 50 6 18 4 14 60 33 270	34 28 200 12 231 50 5 18 4 12 55 33 240	38 31 200 12 231 50 5 18 4 14 55 33 240	3 20 12 23 50 5 5 12 12 12 12 12 12 12 12 12 12 12 12 12

Internal Post-tensioning System

Annex 18

Minimum concrete strength – Helix – Additional reinforcement – Centre spacing and edge distance

of European Technical Assessment **ETA-09/0286** of 19.09.2018

Stressing and fixed anchora	ge / c	ouple	er		(Centr	e sp	acin	g an	d edg	ge di	stan	се				
	b _e =	a'e + b'e + Con	с	COVE		p ^e c	c			<u>.</u>	c p ^e						
BBR VT CONA CMI BT				0806					0906					1206			
Strand arrangement																	
7-wire prestressing steel	stranc Maxim	I – No um ch	minal aract	diam eristic	ieter 1 c tensi	l 5.7 n ile stre	n m ength	Nom 1 860	inal c) MPa	ross-: I ¹⁾	sectio	nal ai	rea 1	50 mn	n²		
				Т	endo	n											
Cross-sectional area A	_p mm ²			1 200					1 350					1 800			
Char. value of maximum force F _F				2 2 3 2					2 5 1 1			3 348					
Char. value of 0.1% proof F_{p0} force				1 968			2214						2 952				
Max. prestressing force $0.90 \cdot F_{p0}$	1 kN			1771					1 993					2 657	7		
Max. overstressing force $0.95 \cdot F_{\text{p0}}$	1 kN			1 870					2 103					2 804			
Minimum concrete stre	nath / F	lelix /	Add	itiona	l rein	force	ment	/ Cei	ntre s	nacir	na an	d edo	ie dis	tance	2		
Minimum concrete strength			/ 101 0.			10100				puo		4 0 4 2	JO 0.10	turres	,		
Cube fcm, 0, cube, 15	₀ MPa	23	28	34	38	43	23	28	34	38	43	23	28	34	38	43	
Cylinder fcm, 0, cylinder, Ø 15		19	23	28	31	35	19	23	28	31	35	19	23	28	31	35	
						35	-										
Helix	•				01	35											
	mm	270	230		_		280	260	255	250	250	330	280	275	260	25	
Helix		270 14	230 12		_		280 14	260 12	255 12	250 12	250 12	330 14	280 14	275 14	260 14		
Helix Outer diameter	mm			225	220	220								14		14	
Helix Outer diameter Bar diameter ²⁾	mm mm	14	12	225 12	220 12	220 12	14	12	12	12	12	14	14	14	14	14 28	
Helix Outer diameter Bar diameter ²⁾ Length approximately	mm mm mm	14 282	12 256	225 12 231	220 12 256	220 12 256	14 282	12 281	12 281	12 281	12 281	14 332	14 332	14 332	14 332	14 28 50	
Helix Outer diameter Bar diameter ²⁾ Length approximately Pitch Number of pitches	mm mm mm	14 282 50	12 256 50	225 12 231 50	220 12 256 50	220 12 256 50	14 282 50	12 281 50	12 281 50	12 281 50	12 281 50	14 332 50	14 332 50	14 332 50	14 332 50	14 28 50 6	
Helix Outer diameter Bar diameter ²⁾ Length approximately Pitch Number of pitches	mm mm mm mm	14 282 50 6	12 256 50 6	225 12 231 50 5	220 12 256 50 6	220 12 256 50 6	14 282 50 6	12 281 50 6	12 281 50 6	12 281 50 6	12 281 50 6	14 332 50 7	14 332 50 7	14 332 50 7	14 332 50 7	14 28 50 6	
Helix Outer diameter Bar diameter ²⁾ Length approximately Pitch Number of pitches Distance	mm mm mm mm	14 282 50 6	12 256 50 6	225 12 231 50 5	220 12 256 50 6	220 12 256 50 6	14 282 50 6	12 281 50 6	12 281 50 6	12 281 50 6	12 281 50 6	14 332 50 7	14 332 50 7	14 332 50 7	14 332 50 7	14 28 50 6 20	
Helix Outer diameter Bar diameter ²) Length approximately Pitch Number of pitches Distance Additional reinforcement	mm mm mm mm E mm	14 282 50 6 20	12 256 50 6 20	225 12 231 50 5 20	220 12 256 50 6 20	220 12 256 50 6 20	14 282 50 6 20	12 281 50 6 20	12 281 50 6 20	12 281 50 6 20	12 281 50 6 20	14 332 50 7 20	14 332 50 7 20	14 332 50 7 20	14 332 50 7 20	14 28 50 6 20	
Helix Outer diameter Bar diameter ²) Length approximately Pitch Number of pitches Distance Additional reinforcement Number of stirrups	mm mm mm mm 	14 282 50 6 20 4	12 256 50 6 20 6	225 12 231 50 5 20 5	220 12 256 50 6 20 4	220 12 256 50 6 20 5	14 282 50 6 20 5	12 281 50 6 20 5	12 281 50 6 20 5	12 281 50 6 20 4	12 281 50 6 20 5	14 332 50 7 20 7	14 332 50 7 20 6	14 332 50 7 20 5	14 332 50 7 20 5	255 14 28 50 6 20 6 14 50	
HelixOuter diameterBar diameter 2)Length approximatelyPitchNumber of pitchesDistanceAdditional reinforcementNumber of stirrupsBar diameter 2)Spacing	mm mm mm mm 	14 282 50 6 20 4 12	12 256 50 6 20 6 12	225 12 231 50 5 20 5 12	220 12 256 50 6 20 4 14	220 12 256 50 6 20 5 14	14 282 50 6 20 5 12	12 281 50 6 20 5 14	12 281 50 6 20 5 12	12 281 50 6 20 4 14	12 281 50 6 20 5 14	14 332 50 7 20 7 12	14 332 50 7 20 6 14	14 332 50 7 20 5 16	14 332 50 7 20 5 16	14 28 50 6 20 6 14 50	
HelixOuter diameterBar diameter 2)Length approximatelyPitchNumber of pitchesDistanceAdditional reinforcementNumber of stirrupsBar diameter 2)Spacing	mm	14 282 50 6 20 4 12 70	12 256 50 6 20 6 12 45	225 12 231 50 5 20 5 12 50 33	220 12 256 50 6 20 4 14 55	220 12 256 50 6 20 5 14 50	14 282 50 6 20 5 12 60	12 281 50 20 20 5 14 55	12 281 50 6 20 5 12 55	12 281 50 6 20 4 14 65	12 281 50 6 20 5 14 55	14 332 50 7 20 7 12 60	14 332 50 7 20 6 14 55	14 332 50 7 20 5 16 70 35	14 332 50 7 20 5 16 70	12 28 50 6 20 6 12 50 35	
HelixOuter diameterBar diameter 2)Length approximatelyPitchNumber of pitchesDistanceAdditional reinforcementNumber of stirrupsBar diameter 2)SpacingDistance from anchor plate	mm	14 282 50 6 20 4 12 70 33	12 256 50 6 20 6 12 45 33 290	225 12 231 50 5 20 5 12 50 33 260	220 12 256 50 6 20 4 14 55 33 260	220 12 256 50 6 20 5 14 50 33 260	14 282 50 6 20 5 12 60 35 330	12 281 50 20 5 14 55 35 300	12 281 50 6 20 5 12 55 35 290	12 281 50 6 20 4 14 65 35 290	12 281 50 6 20 5 14 55 35 290	14 332 50 7 20 7 12 60 35 390	14 332 50 7 20 6 14 55 35 350	14 332 50 7 20 5 16 70 35 320	14 332 50 7 20 5 16 70 35 310	14 28 50 6 20 6 14 50 35 29	
Helix Outer diameter Bar diameter ²) Length approximately Pitch Number of pitches Distance Additional reinforcement Number of stirrups Bar diameter ²) Spacing Distance from anchor plate Minimum outer dimensions B × I	mm mm	14 282 50 6 20 4 12 70 33 310 330	12 256 50 6 20 6 12 45 33 290	225 12 231 50 5 20 5 12 50 33 260 280	220 12 256 50 6 20 4 14 55 33 260	220 12 256 50 6 20 5 14 50 33 260	14 282 50 6 20 5 12 60 35 330 350	12 281 50 6 20 5 14 55 35 300 320	12 281 50 6 20 5 12 55 35 290	12 281 50 6 20 4 14 65 35	12 281 50 6 20 5 14 55 35 290	14 332 50 7 20 7 12 60 35 390	14 332 50 7 20 6 14 55 35 350	14 332 50 7 20 5 16 70 35	14 332 50 7 20 5 16 70 35 310	14 28 50 6 20 6 14 50 35 29	

²⁾....Bar diameter of 14 mm can be replaced by 16 mm.

Annex 19

Minimum concrete strength – Helix – Additional reinforcement – Centre spacing and edge distance

of European Technical Assessment **ETA-09/0286** of 19.09.2018

Stressing and fixed anchora	= a'e + = b'e + . Con	c	COVE		p [°] p [°]					p ^e						
BBR VT CONA CMI BT				1306					1506					1606		
Strand arrangement)			(000 000 000)			()	
7-wire prestressing stee	I stran Maxim										sectio	onal a	rea 1 {	50 mr	n²	
				1	endo	n										
Cross-sectional area	np mm ²	2		1 950					2 2 5 0					2 4 0 0		
	ok kN			3 6 2 7					4 185					4 4 6 4		
Char. value of 0.1% proof force Fp0	.1 kN			3 198					3 690					3 936		
Max. prestressing force 0.90 · Fp0	.1 kN			2878					3 321			1		3 542		
Max. overstressing force $0.95 \cdot F_{\text{pC}}$.1 kN			3 0 3 8					3 506					3 7 3 9		
BA :				41	1	6		10-	- 4					4		
Minimum concrete stre	ngth /	Helix	Add	itiona	i rein	TOrce	ement	c/Ce	ntre s	расп	ng an	a eag	ge als	stance	9	
Minimum concrete strength Cube f _{cm, 0, cube, 12}	50 MPa	23	28	34	38	43	23	28	34	38	43	23	28	34	38	4
Cylinder fcm, 0, cylinder, ∅ 1		1	23	28	31	35	19	23	28	31	35	19	23	28	31	3
Helix	50 1				•					• ·					• •	
Outer diameter	mm	375	330	300	280	270	375	330	315	305	305	375	330	320	310	30
Bar diameter ²⁾	mm	-	14	14	14	14	14		14	14	14	14	14	14	14	1
Length approximately	mm	382	357	382	332	282	432	432	382	332	332	432	432		382	33
Pitch	mm	50	50	50	50	50	50	50	50	50	50	50	50	50	50	5
Number of pitches	—	8	8	8	7	6	9	9	8	7	7	9	9	9	8	7
Distance	E mm	23	23	23	23	23	27	27	27	27	27	27	27	27	27	2
	÷															
Additional reinforcement		7	6	6	6	7	7	6	5	6	5	7	6	5	6	6
Additional reinforcement Number of stirrups	mm	7	L Č				14	16	16	16	16	14	16	16	16	1
	mm mm	12	14	14	14	14	14									6
Number of stirrups Bar diameter ²⁾ Spacing	mm mm	12 55	14 60	55	14 60	14 45	60	65	65	55	60	60	65	65	60	-
Number of stirrups Bar diameter ²⁾ Spacing Distance from anchor plate	mm mm F mm	12 55 40	14 60 40	55 40	60 40	45 40	60 42	65 42	65 42	42	42	42	42	42	42	4
Number of stirrups Bar diameter ²⁾ Spacing	mm mm F mm	12 55 40	14 60	55	60	45 40	60 42	65 42	65				42	42		4
Number of stirrups Bar diameter ²⁾ Spacing Distance from anchor plate Minimum outer dimensions B × Centre spacing and edge distan	mm mm F mm B mm	12 55 40 410	14 60 40 370	55 40 340	60 40 320	45 40 310	60 42 440	65 42 400	65 42 360	42 350	42 350	42 450	42 410	42 370	42 360	4
Number of stirrups Bar diameter ²) Spacing Distance from anchor plate Minimum outer dimensions B × Centre spacing and edge distant Minimum centre spacing ac, b	mm mm F mm B mm	12 55 40 410 425	14 60 40	55 40 340 355	60 40 320 340	45 40 310 325	60 42 440 455	65 42 400 415	65 42 360 380	42 350	42 350 365	42 450 470	42	42 370 390	42 360 375	4

electronic copy

CONA CMI BT

Internal Post-tensioning System

Annex 20

Minimum concrete strength – Helix – Additional reinforcement – Centre spacing and edge distance

	nd fixed anchorag	e / co	ouple	er			4	re sp		g and	d ed	ge di	istan	ce			
		-	a' _e + b' _e +				° P ^e C	c				p ^e p ^e c			a _c		
		C	Con	crete	cove			4	, <u> </u>					-	2406	1	
BBR VT CONA CMI BT Strand arrangement				()						2406					
7-wire	prestressing steel s	trand Iaxim										sectio	onal ai	rea 1	50 mn	n²	
					Т	endo	n										
Cross-sectiona	l area A _p	mm ²			2 850					3 300					3 600		
Char. value of r	maximum force F _{pk}	kN			5 301					6 138					6 6 9 6		
Char. value of (proof force	0.1 % F _{p0.1}	kN			4 674					5412					5 904		
Max. prestressi	ing force 0.90 · Fp0.1	kN			4 207					4 871					5314		
Max. overstress	sing force $0.95 \cdot F_{p0.1}$	kN			4 4 4 0					5 141					5 609		
Minim		gth / F	lelix /	Add	itiona	l rein	force	ment	: / Ce	ntre s	paciı	ng an	d edg	je dis	tance)	
	num concrete streng																
Minimum cond	crete strength		23	28	34	38	43	23	28	34	38	43	23	28	34	38	Δ
Minimum cond Cube	fcm, 0, cube, 150	MPa	23	28 23	34 28	38 31	43	23	28 23	34 28	38 31	43 35	23	28	34 28	38 31	
Minimum cond Cube Cylinder	crete strength	MPa	23 19	28 23	34 28	38 31	43 35	23 19	28 23	34 28	38 31	43 35	23 19	28 23	34 28	38 31	
Minimum cond Cube Cylinder Helix	crete strength fcm, 0, cube, 150 fcm, 0, cylinder, ∅ 150	MPa MPa	19	23	28	31	35	19	23	28	31	35	19	23	28	31	3
Minimum cond Cube Cylinder Helix Outer diameter	crete strength fcm, 0, cube, 150 fcm, 0, cylinder, ∅ 150	MPa MPa mm	19 420	23 360	28 360	31 330	35 325	19 475	23 420	28 390	31 360	35 340	19 475	23 430	28 410	31 360	3
Minimum cond Cube Cylinder Helix Outer diameter Bar diameter ²⁾	crete strength fcm, 0, cube, 150 fcm, 0, cylinder, ∅ 150	MPa MPa mm mm	19 420 14	23 360 14	28 360 14	31 330 14	35 325 14	19 475 14	23 420 14	28 390 14	31 360 14	35 340 14	19 475 14	23 430 14	28 410 14	31 360 14	3
Minimum cond Cube Cylinder Helix Outer diameter	crete strength fcm, 0, cube, 150 fcm, 0, cylinder, ∅ 150	MPa MPa mm	19 420	23 360	28 360	31 330	35 325	19 475	23 420	28 390	31 360	35 340	19 475	23 430	28 410 14	31 360	3 36 1 43
Minimum cond Cube Cylinder Helix Outer diameter Bar diameter ²⁾ Length approxi	crete strength fcm, 0, cube, 150 fcm, 0, cylinder, ∅ 150	MPa MPa mm mm	19 420 14 457	23 360 14 457	28 360 14 432	31 330 14 432	35 325 14 382	19 475 14 482	23 420 14 482	28 390 14 432	31 360 14 432	35 340 14 382	19 475 14 532	23 430 14 532	28 410 14 482	31 360 14 482	3 36 1 43 5
Minimum cond Cube Cylinder Helix Outer diameter Bar diameter ²⁾ Length approxin Pitch	crete strength fcm, 0, cube, 150 fcm, 0, cylinder, ∅ 150	MPa MPa mm mm	19 420 14 457 50	23 360 14 457 50	28 360 14 432 50	31 330 14 432 50	32 5 14 382 50	19 475 14 482 50	23 420 14 482 50	28 390 14 432 50	31 360 14 432 50	35 340 14 382 50	19 475 14 532 50	23 430 14 532 50	28 410 14 482 50	31 360 14 482 50	30 30 1 43 5
Minimum cond Cube Cylinder Helix Outer diameter Bar diameter ²⁾ Length approxi Pitch Number of pitch	crete strength fcm, 0, cube, 150 fcm, 0, cylinder, ∅ 150 mately hes	MPa MPa mm mm mm	19 420 14 457 50 10	23 360 14 457 50 10	28 360 14 432 50 9	31 330 14 432 50 9	35 325 14 382 50 8	19 475 14 482 50 10	23 420 14 482 50 10	28 390 14 432 50 9	31 360 14 432 50 9	35 340 14 382 50 8	19 475 14 532 50 11	23 430 14 532 50 11	28 410 14 482 50 10	31 360 14 482 50 10	3 3 1 43 5 9
Minimum cond Cube Cylinder Helix Outer diameter Bar diameter ²⁾ Length approxii Pitch Number of pitch Distance	crete strength fcm, 0, cube, 150 fcm, 0, cylinder, ∅ 150 mately hes E	MPa MPa mm mm mm	19 420 14 457 50 10	23 360 14 457 50 10	28 360 14 432 50 9	31 330 14 432 50 9	35 325 14 382 50 8	19 475 14 482 50 10	23 420 14 482 50 10	28 390 14 432 50 9	31 360 14 432 50 9	35 340 14 382 50 8	19 475 14 532 50 11	23 430 14 532 50 11	28 410 14 482 50 10	31 360 14 482 50 10	3 3 1 4 3 5 9 3
Minimum cond Cube Cylinder Helix Outer diameter Bar diameter ²⁾ Length approxin Pitch Number of pitch Distance Additional rein	crete strength fcm, 0, cube, 150 fcm, 0, cylinder, ∅ 150 mately hes E	MPa MPa mm mm mm mm mm	19 420 14 457 50 10 27	23 360 14 457 50 10 27	28 360 14 432 50 9 27	31 330 14 432 50 9 27	325 14 382 50 8 27	 475 14 482 50 10 31 	 23 420 14 482 50 10 31 	28 390 14 432 50 9 31	3 60 14 432 50 9 31	340 14 382 50 8 31	 475 14 532 50 11 32 	 23 430 14 532 50 11 32 	28 410 14 482 50 10 32	3 60 14 482 50 10 32	3 36 1 43 5 9 3
Minimum cond Cube Cylinder Helix Outer diameter Bar diameter ²⁾ Length approxin Pitch Number of pitch Distance Additional rein Number of stirr	crete strength fcm, 0, cube, 150 fcm, 0, cylinder, ∅ 150 mately hes E	MPa MPa mm mm mm mm mm	 19 420 14 457 50 10 27 7 	23 360 14 457 50 10 27 7	28 360 14 432 50 9 27 7	330 14 432 50 9 277 7	325 14 382 50 8 27 7	 475 14 482 50 10 31 6 	 23 420 14 482 50 10 31 7 	28 390 14 432 50 9 31 8	360 14 432 50 9 31 7	340 14 382 50 8 31 8	 475 14 532 50 11 32 7 	 23 430 14 532 50 11 32 7 	28 410 14 482 50 10 32 7	360 14 482 50 10 32 7	36 14 5 9 3 3
Minimum cond Cube Cylinder Helix Outer diameter Bar diameter ²⁾ Length approxi Pitch Number of pitch Distance Additional rein Number of stirre Bar diameter	crete strength fcm, 0, cube, 150 fcm, 0, cylinder, ∅ 150 mately hes Enforcement ups	MPa MPa mm mm mm mm mm	 420 14 457 50 10 27 7 16 	23 360 14 457 50 10 27 27 7 16	28 360 14 432 50 9 27 7 16	330 14 432 50 9 277 7 16	32 5 14 382 50 8 27 7 16	 475 14 482 50 10 31 6 20 	23 420 14 482 50 10 31 7 20	28 390 14 432 50 9 31 31 8 8 20	360 14 432 50 9 31 7 20	340 14 382 50 8 31 8 16	 475 14 532 50 11 32 7 20 	23 430 14 532 50 11 32 7 20	28 410 14 482 50 10 32 7 20	360 14 482 50 10 32 7 20	3 3 1 4 3 5 3 3 8 2 5
Minimum cond Cube Cylinder Helix Outer diameter Bar diameter ²⁾ Length approxin Pitch Number of pitch Distance Additional rein Number of stirrn Bar diameter Spacing	crete strength fcm, 0, cube, 150 fcm, 0, cylinder, ∅ 150 mately hes E nforcement ups anchor plate F	MPa MPa mm mm mm mm mm mm mm mm	 420 14 457 50 10 27 7 16 65 	23 360 14 457 50 10 27 27 7 16 65	28 360 14 432 50 9 27 27 7 16 65	330 14 432 50 9 277 7 16 65	32 5 14 382 50 8 27 7 16 60	 475 14 482 50 10 31 6 20 80 46 	23 420 14 482 50 10 31 31 7 20 75	28 390 14 432 50 9 31 31 8 20 65	360 14 432 50 9 31 7 20 65	340 14 382 50 8 31 8 16 50	 475 14 532 50 11 32 7 20 80 	23 430 14 532 50 11 32 7 20 80	28 410 14 482 50 10 32 7 20 70 47	360 14 482 50 10 32 7 20 65	3 3 1 4 5 0 3 8 2 5 4
Minimum cond Cube Cylinder Helix Outer diameter Bar diameter ²⁾ Length approxi Pitch Number of pitch Distance Additional reir Number of stirr Bar diameter Spacing Distance from a Minimum outer	crete strength fcm, 0, cube, 150 fcm, 0, cylinder, ∅ 150 mately hes E nforcement ups anchor plate F	MPa MPa mm mm mm mm mm mm mm mm	19 420 14 457 50 10 27 7 16 65 42	23 360 14 457 50 10 27 7 16 65 42	28 360 14 432 50 9 27 7 16 65 42	330 14 432 50 9 27 7 16 65 42	325 14 382 50 8 27 7 16 60 42	 475 14 482 50 10 31 6 20 80 46 	23 420 14 482 50 10 31 31 7 20 75 46	28 390 14 432 50 9 31 31 8 20 65 46	360 14 432 50 9 31 7 20 65 46	340 14 382 50 8 31 8 16 50 46	 475 14 532 50 11 32 7 20 80 47 	23 430 14 532 50 11 32 7 20 80 47	28 410 14 482 50 10 32 7 20 70 47	360 14 482 50 10 32 7 20 65 47	3 3 1 4 5 0 3 8 2 5 4
Minimum cond Cube Cylinder Helix Outer diameter Bar diameter ²⁾ Length approxi Pitch Number of pitch Distance Additional reir Number of stirr Bar diameter Spacing Distance from a Minimum outer	crete strength fcm, 0, cube, 150 fcm, 0, cylinder, \oslash 150 mately mately hes E nforcement ups anchor plate F dimensions B × B g and edge distance	MPa MPa mm mm mm mm mm mm mm mm	19 420 14 457 50 10 27 7 16 65 42	23 360 14 457 50 10 27 7 16 65 42	28 360 14 432 50 9 27 7 16 65 42 410	330 14 432 50 9 27 7 16 65 42	325 14 382 50 8 27 7 16 60 42 370	 475 14 482 50 10 31 6 20 80 46 	23 420 14 482 50 10 31 70 75 46 480	28 390 14 432 50 9 31 31 8 20 65 46 440	360 14 432 50 9 31 7 20 65 46	340 14 382 50 8 31 8 16 50 46 400	19 475 14 532 50 11 32 7 20 80 47 560	23 430 14 532 50 11 32 7 20 80 47	28 410 14 482 50 10 32 7 20 70 47 460	360 14 482 50 10 32 7 20 65 47 440	14 43 50 33 33 8 20 53 4 42

electronic copy

CONA CMI BT

Internal Post-tensioning System

Annex 21

Minimum concrete strength – Helix – Additional reinforcement – Centre spacing and edge distance

Stressing ar	nd fixed anchorag	e/co	ouple	er		(Centr	e sp	acin	g ano	d edą	ge di	stan	се			_
BBR VT CONA CMI BT				С	COVE		p ^e p ^e										
BBR VT CON	А СМІ ВТ				2506					2706					3106		
Strand arrangement																	
7-wire	prestressing steel s	trand Iaximu										sectio	nal ar	rea 1 {	50 mn	n²	
					T	endo	on										
Cross-sectiona	l area A _p	mm ²			3 7 5 0					4 050					4 650		
Char. value of	maximum force F _{pk}	kN			6975					7 533					8 649		
Char. value of force	0.1% proof F _{p0.1}	kN			6 150					6 642					7 626		
Max. prestress	ing force $0.90 \cdot F_{p0.1}$	kN			5 535					5978					6 863		
Max. overstres	sing force $0.95 \cdot F_{p0.1}$	kN			5843					6310					7 245		
Minin	num concrete streng	gth / H	elix /	Add	itiona	l rein	force	ment	: / Cei	ntre s	pacir	ng an	d edg	je dis	tance	9	
Minimum con																	1
Cube	2	MDa	23	28	34	38	43	23	28	34	38	43	23	28	34	38	43
	f cm, 0, cube, 150							19	00	28	31	35	40			31	35
Cylinder	Tcm, 0, cube, 150 fcm, 0, cylinder, \oslash 150		19	23	28	31	35	19	23	20	01	00	19	23	28	31	3.
Cylinder Helix	$f_{cm, 0, cylinder, \varnothing 150}$		19								_						
Cylinder Helix Outer diameter	$f_{cm, 0, cylinder, \varnothing 150}$	MPa mm	19 520	430	420	390	380	520	475	440	420	390	560	520	475	430	43
Cylinder Helix Outer diameter Bar diameter ²⁾	$f_{cm, 0, cylinder, \varnothing 150}$.	MPa mm mm	19 520 14	430 14	420 14	390 14	380 14	520 14	475 14	440 14	420 14	390 14	560 14	520 14	475 14	430 14	43
Cylinder Helix Outer diameter Bar diameter ²⁾ Length approxi	$f_{cm, 0, cylinder, \varnothing 150}$.	MPa mm mm mm	19 520 14 532	430 14 532	420 14 482	390 14 482	380 14 432	520 14 532	475 14 532	440 14 482	420 14 482	390 14 432	560 14 532	520 14 532	475 14 582	430 14 482	43 14 43
Cylinder Helix Outer diameter Bar diameter ²⁾ Length approxi Pitch	fcm, 0, cylinder, ⊘ 150 mately	MPa mm mm	19 520 14 532 50	430 14 532 50	420 14 482 50	390 14 482 50	380 14 432 50	520 14 532 50	475 14 532 50	440 14 482 50	420 14 482 50	390 14 432 50	560 14 532 50	520 14 532 50	475 14 582 50	430 14 482 50	43 14 43 50
Cylinder Helix Outer diameter Bar diameter ²⁾ Length approxi Pitch Number of pitc	fcm, 0, cylinder, ⊘ 150 mately	MPa mm mm mm	19 520 14 532 50 11	430 14 532 50 11	420 14 482 50 10	390 14 482 50 10	380 14 432 50 9	520 14 532 50 11	475 14 532 50 11	440 14 482 50 10	420 14 482 50 10	390 14 432 50 9	560 14 532 50 11	520 14 532 50 11	475 14 582 50 12	430 14 482 50 10	43 14 43 50 9
Cylinder Helix Outer diameter Bar diameter ²⁾ Length approxi Pitch Number of pitc Distance	fcm, 0, cylinder, ⊘ 150 mately hes	MPa mm mm mm	19 520 14 532 50	430 14 532 50	420 14 482 50	390 14 482 50	380 14 432 50	520 14 532 50	475 14 532 50	440 14 482 50	420 14 482 50	390 14 432 50	560 14 532 50	520 14 532 50	475 14 582 50	430 14 482 50	43 14 43 50 9
Cylinder Helix Outer diameter Bar diameter ²⁾ Length approxi Pitch Number of pitc Distance Additional rein	fcm, 0, cylinder, ⊘ 150 mately hes E	MPa mm mm mm mm	19 520 14 532 50 11 35	430 14 532 50 11 35	420 14 482 50 10 35	390 14 482 50 10 35	380 14 432 50 9 35	520 14 532 50 11 35	475 14 532 50 11 35	440 14 482 50 10 35	420 14 482 50 10 35	390 14 432 50 9 35	560 14 532 50 11 35	520 14 532 50 11 35	475 14 582 50 12 35	430 14 482 50 10 35	43 14 43 50 9 35
Cylinder Helix Outer diameter Bar diameter ²⁾ Length approxi Pitch Number of pitc Distance Additional rein	fcm, 0, cylinder, ⊘ 150 mately hes E	MPa mm mm mm mm mm	19 520 14 532 50 11 35 7	430 14 532 50 11 35 6	420 14 482 50 10 35 7	390 14 482 50 10 35 7	380 14 432 50 9 35 7	520 14 532 50 11 35 8	475 14 532 50 11 35 7	440 14 482 50 10 35 7	420 14 482 50 10 35 8	390 14 432 50 9 35 8	560 14 532 50 11 35 9	520 14 532 50 11 35 8	475 14 582 50 12 35 8	430 14 482 50 10 35 8	43 14 43 50 9 35
Cylinder Helix Outer diameter ²⁾ Length approxi Pitch Number of pitc Distance Additional rein Number of stirr Bar diameter	fcm, 0, cylinder, ⊘ 150 mately hes E	MPa mm mm mm mm mm mm	19 520 14 532 50 11 35 7 20	430 14 532 50 11 35 6 20	420 14 482 50 10 35 7 20	390 14 482 50 10 35 7 20	380 14 432 50 9 35 7 20	520 14 532 50 11 35 8 20	475 14 532 50 11 35 7 20	440 14 482 50 10 35 7 20	420 14 482 50 10 35 8 8 20	390 14 432 50 9 35 35 8 20	560 14 532 50 11 35 9 20	520 14 532 50 11 35 8 20	475 14 582 50 12 35 8 8 20	430 14 482 50 10 35 8 20	43 14 43 50 9 35 8 20
Cylinder Helix Outer diameter ²⁾ Length approxi Pitch Number of pitc Distance Additional rein Number of stirr Bar diameter Spacing	fcm, 0, cylinder, ⊘ 150 mately hes E nforcement ups	MPa mm mm mm mm mm mm mm	19 520 14 532 50 11 35 7 20 80	430 14 532 50 11 35 35 6 20 90	420 14 482 50 10 35 7 20 70	390 14 482 50 10 35 7 20 60	380 14 432 50 9 35 7 20 60	520 14 532 50 11 35 8 20 80	475 14 532 50 11 35 7 20 80	440 14 482 50 10 35 7 20 75	420 14 482 50 10 35 8 20 60	390 14 432 50 9 35 35 8 20 60	560 14 532 50 11 35 9 20 80	520 14 532 50 11 35 8 20 75	475 14 582 50 12 35 35 8 20 70	430 14 482 50 10 35 8 20 65	43 ³ 14 43 ³ 50 ⁹ 9 35 ⁹ 8 20 60 ⁰
Cylinder Helix Outer diameter Bar diameter ²⁾ Length approxi Pitch Number of pitc Distance Additional rein Number of stirr Bar diameter Spacing Distance from a	fcm, 0, cylinder, ⊘ 150 mately hes Enforcement ups anchor plate F	MPa mm mm mm mm mm mm mm mm	19 520 14 532 50 11 35 7 20 80 50	430 14 532 50 11 355 6 20 90 50	420 14 482 50 10 35 7 20 70 50	390 14 482 50 10 35 7 20 60 50	380 14 432 50 9 35 7 20 60 50	520 14 532 50 11 355 8 20 80 50	475 14 532 50 11 35 7 20 80 50	440 14 482 50 10 35 7 20 75 50	420 14 482 50 10 35 35 8 20 60 50	390 14 432 50 9 35 35 8 20 60 50	560 14 532 50 11 35 9 20 80 50	520 14 532 50 11 35 8 20 75 50	475 14 582 50 12 35 35 8 20 70 50	430 14 482 50 10 35 8 8 20 65 50	43 12 43 50 9 35 8 20 60 50
Cylinder Helix Outer diameter Bar diameter ²⁾ Length approxi Pitch Number of pitc Distance Additional rein Number of stirr Bar diameter Spacing Distance from a	fcm, 0, cylinder, ⊘ 150 mately hes E nforcement ups anchor plate F r dimensions B × B	MPa mm mm mm mm mm mm mm mm mm	19 520 14 532 50 11 35 7 20 80	430 14 532 50 11 35 35 6 20 90	420 14 482 50 10 35 7 20 70	390 14 482 50 10 35 7 20 60	380 14 432 50 9 35 7 20 60	520 14 532 50 11 35 8 20 80	475 14 532 50 11 35 7 20 80	440 14 482 50 10 35 7 20 75 50	420 14 482 50 10 35 8 20 60	390 14 432 50 9 35 35 8 20 60	560 14 532 50 11 35 9 20 80	520 14 532 50 11 35 8 20 75	475 14 582 50 12 35 35 8 20 70	430 14 482 50 10 35 8 20 65	43 12 43 50 9 35 8 20 60 50
Cylinder Helix Outer diameter Bar diameter ²⁾ Length approxi Pitch Number of pitc Distance Additional rein Number of stirr Bar diameter Spacing Distance from a Minimum outer Centre spacing	fcm, 0, cylinder, \oslash 150 mately hes E nforcement ups anchor plate F dimensions $B \times B$ g and edge distance	MPa mm mm mm mm mm mm mm mm mm	19 520 14 532 50 11 35 7 20 80 50 570	430 14 532 50 11 35 6 20 90 50 520	420 14 482 50 10 35 7 20 70 50 470	390 14 482 50 10 35 7 20 60 50 450	380 14 432 50 9 35 35 7 20 60 50 430	520 14 532 50 11 35 8 20 80 50 590	475 14 532 50 11 35 7 20 80 50 540	440 14 482 50 10 35 7 20 75 50 490	420 14 482 50 10 35 35 8 20 60 50 470	390 14 432 50 9 35 35 8 20 60 50 440	560 14 532 50 11 35 9 20 80 50 630	520 14 532 50 11 35 8 20 75 50 580	475 14 582 50 12 35 35 8 20 70 50 530	430 14 482 50 10 35 35 8 20 65 50 500	43 12 43 50 9 35 35 8 20 60 50 48
Cylinder Helix Outer diameter Bar diameter ²⁾ Length approxi Pitch Number of pitc Distance Additional rein Number of stirr Bar diameter Spacing Distance from a	fcm, 0, cylinder, ⊘ 150 mately hes E nforcement ups anchor plate F i dimensions B × B g and edge distance e spacing ac, bc	MPa mm mm mm mm mm mm mm mm mm	19 520 14 532 50 11 35 7 20 80 50 570 590	430 14 532 50 11 35 6 20 90 50 520 535	420 14 482 50 10 35 7 20 70 50 470 485	390 14 482 50 10 35 7 20 60 50 450 465	380 14 432 50 9 35 35 7 20 60 50 430	520 14 532 50 11 35 8 20 80 50 590 610	475 14 532 50 11 35 7 20 80 50 540 5555	440 14 482 50 10 35 7 20 75 50	420 14 482 50 10 35 35 8 20 60 50 470 485	390 14 432 50 9 35 35 8 20 60 50 440 460	560 14 532 50 11 35 20 80 50 630 650	520 14 532 50 11 35 8 20 75 50 580 580	475 14 582 50 12 35 35 8 20 70 50 530 545	430 14 482 50 10 35 8 8 20 65 50	43 14 43 50 9 35 35 8 20 60 50 48 49

BBR

Internal Post-tensioning System

Annex 22

Minimum concrete strength – Helix – Additional reinforcement – Centre spacing and edge distance

of European Technical Assessment **ETA-09/0286** of 19.09.2018

Stressing and fixed anchorag	e / co	ouple	er		C	Centr	e sp	acin	g an	d ed	ge di	stan	се			_
	a _e = b _e = c	b'e +	С	cove					re C							
BBR VT CONA CMI BT				3706					4206					4306		
Strand arrangement																
7-wire prestressing steel s	trand Iaximu										sectio	nal a	rea 15	50 mn	n²	
				т	endo	n										
Cross-sectional area An	mm ²			5 550					6 300					6 4 5 0		
Char. value of maximum force F_{pk}	kN			10 323					11718					11 997		
Char. value of 0.1% proof force F _{p0.1}	kN			9 102	-		<u> </u>		10 332			<u> </u>		10 578		
Max. prestressing force 0.90 · F _{p0.1}	kN			8 192					9 2 9 9					9 520		
Max. overstressing force $0.95 \cdot F_{p0.1}$	kN			8 647					9815					10 049		
Minimum concrete streng	jth / H	elix /	Add	itiona	l rein	force	men	t / Ce	ntre s	pacir	ng an	d edç	ge dis	tance	9	
Minimum concrete strength	r															-
Cube fcm, 0, cube, 150			28	34	38	43	23	28	34	38	43	23	28	34	38	4
		19	23	28	31	35	19	23	28	31	35	19	23	28	31	3
$\label{eq:cylinder} Cylinder \qquad f_{cm, \ 0, \ cylinder, \ \varnothing \ 150}$	MPa															
Helix																
Helix Outer diameter	mm			580		580					630			670		
Helix Outer diameter Bar diameter	mm mm		16	580 16	16	16		16	16	16	16		16	16	16	16
Helix Outer diameter Bar diameter Length approximately	mm mm mm		16 533	580 16 533	16 533	16 533		16 583	16 583	16 583	16 583		16 583	16 583	16 583	16 58
Helix Outer diameter Bar diameter Length approximately Pitch	mm mm		16 533 50	580 16 533 50	16 533 50	16 533 50		16 583 50	16 583 50	16 583 50	16 583 50		16 583 50	16 583 50	16 583 50	10 58 50
Helix Outer diameter Bar diameter Length approximately Pitch Number of pitches	mm mm mm		16 533 50 11	580 16 533 50 11	16 533 50 11	16 533 50 11		16 583 50 12	16 583 50 12	16 583 50 12	16 583 50 12		16 583 50 12	16 583 50 12	16 583 50 12	16 58 50 12
Helix Outer diameter Bar diameter Length approximately Pitch Number of pitches Distance	mm mm mm		16 533 50	580 16 533 50	16 533 50	16 533 50		16 583 50	16 583 50	16 583 50	16 583 50		16 583 50	16 583 50	16 583 50	1) 58 5) 1)
Helix Outer diameter Bar diameter Length approximately Pitch Number of pitches Distance E Additional reinforcement	mm mm mm mm		16 533 50 11 40	580 16 533 50 11 40	16 533 50 11 40	16 533 50 11 40		16 583 50 12 45	16 583 50 12 45	16 583 50 12 45	16 583 50 12 45		16 583 50 12 45	16 583 50 12 45	16 583 50 12 45	10 58 50 12 4
Helix Outer diameter Bar diameter Length approximately Pitch Number of pitches Distance E Additional reinforcement Number of stirrups	mm mm mm mm		16 533 50 11 40 9	580 16 533 50 11 40 9	16 533 50 11 40 9	16 533 50 11 40 9		16 583 50 12 45 10	16 583 50 12 45 10	16 583 50 12 45 10	16 583 50 12 45 10		16 583 50 12 45 10	16 583 50 12 45 10	16 583 50 12 45 10	10 58 50 12 49
Helix Outer diameter Bar diameter Length approximately Pitch Number of pitches Distance E Additional reinforcement Number of stirrups Bar diameter	mm mm mm mm		16 533 50 11 40 9 20	580 16 533 50 11 40 9 20	16 533 50 11 40 9 20	16 533 50 11 40 9 20		16 583 50 12 45 10 20	16 583 50 12 45 10 20	16 583 50 12 45 10 20	16 583 50 12 45 10 20		16 583 50 12 45 10 20	16 583 50 12 45 10 20	16 583 50 12 45 10 20	10 58 50 12 45 10 20
Helix Outer diameter Bar diameter Length approximately Pitch Number of pitches Distance E Additional reinforcement Number of stirrups Bar diameter Spacing	mm mm mm mm mm mm mm		16 533 50 11 40 9 20 70	580 16 533 50 11 40 9 20 70	16 533 50 11 40 9 20 70	16 533 50 11 40 9 20 70		16 583 50 12 45 10 20 70	16 583 50 12 45 10 20 70	16 583 50 12 45 10 20 70	16 583 50 12 45 10 20 70		16 583 50 12 45 10 20 70	16 583 50 12 45 10 20 70	16 583 50 12 45 10 20 70	10 58 50 12 40 10 20 70
Helix Outer diameter Bar diameter Length approximately Pitch Number of pitches Distance E Additional reinforcement Number of stirrups Bar diameter Spacing Distance from anchor plate	mm mm mm mm mm mm mm mm		16 533 50 11 40 9 20 70 50	580 16 533 50 11 40 9 20 70 50	16 533 50 11 40 9 20 70 50	16 533 50 11 40 9 20 70 50		16 583 50 12 45 10 20 70 55	16 583 50 12 45 10 20 70 55	16 583 50 12 45 10 20 70 55	16 583 50 12 45 10 20 70 55		16 583 50 12 45 10 20 70 55	16 583 50 12 45 10 20 70 55	16 583 50 12 45 10 20 70 55	10 58 50 12 41 20 70 55
Helix Outer diameter Bar diameter Length approximately Pitch Number of pitches Distance E Additional reinforcement Number of stirrups Bar diameter Spacing Distance from anchor plate F Minimum outer dimensions B × B	mm mm mm mm mm mm mm mm mm		16 533 50 11 40 9 20 70	580 16 533 50 11 40 9 20 70	16 533 50 11 40 9 20 70	16 533 50 11 40 9 20 70		16 583 50 12 45 10 20 70	16 583 50 12 45 10 20 70	16 583 50 12 45 10 20 70	16 583 50 12 45 10 20 70		16 583 50 12 45 10 20 70	16 583 50 12 45 10 20 70	16 583 50 12 45 10 20 70	10 58 50 12 49 10 20 70 59
Helix Outer diameter Bar diameter Length approximately Pitch Number of pitches Distance E Additional reinforcement Number of stirrups Bar diameter Spacing Distance from anchor plate F Minimum outer dimensions B × B Centre spacing and edge distance	mm mm mm mm mm mm mm mm mm		16 533 50 11 40 9 20 70 50 660	580 16 533 50 11 40 9 20 70 50 660	16 533 50 11 40 9 20 70 50 660	16 533 50 11 40 9 20 70 50 660		16 583 50 12 45 10 20 70 55 720	16 583 50 12 45 10 20 70 55 720	16 583 50 12 45 10 20 70 55 720	16 583 50 12 45 10 20 70 55 720		16 583 50 12 45 10 20 70 55 740	16 583 50 12 45 10 20 70 55 740	16 583 50 12 45 10 20 70 55 740	10 58 50 12 45 10 20 70 55 74
Helix Outer diameter Bar diameter Length approximately Pitch Number of pitches Distance E Additional reinforcement Number of stirrups Bar diameter Spacing Distance from anchor plate F Minimum outer dimensions B × B	mm mm mm mm mm mm mm mm mm		16 533 50 11 40 9 20 70 50	580 16 533 50 11 40 9 20 70 50	16 533 50 11 40 9 20 70 50	16 533 50 11 40 9 20 70 50		16 583 50 12 45 10 20 70 55 720 735	16 583 50 12 45 10 20 70 55 720	16 583 50 12 45 10 20 70 55	16 583 50 12 45 10 20 70 55 720 735		16 583 50 12 45 10 20 70 55 740 755	16 583 50 12 45 10 20 70 55	16 583 50 12 45 10 20 70 55 740 755	10 58 50 12 45 70 70 70 74

CONA CMI BT

Internal Post-tensioning System

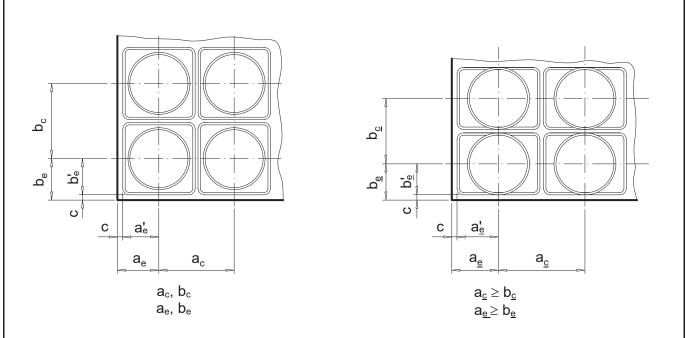
Annex 23

Minimum concrete strength – Helix – Additional reinforcement – Centre spacing and edge distance

Stressing and fixed anchorage $E_{\geq B}$ E_{\perp} E_{\perp}	a _e = b _e =	a'e + b'e +	c			p ^e p ^o					p ^e p ^c					
BBR VT CONA CMI BT	с	Con	crete	4806			1		5506			1	I	6106	I	
BBR VT CONA CMI BT			4806													
7-wire prestressing steel s	strand Maximu	– Nc um ch	ominal naract	diam eristic	neter 1 c tens	15.7 n ile stre	1m ength	. Nom 1 86 0	ninal c D MPa	ross-s	sectio	nal a	rea 1 !	50 mr	n²	
				Т	Fendo	on										
Cross-sectional area A _D	mm ²			7 200					8 250					9 1 5 0		
Char. value of maximum force F_{pk}				13 392					15 345					17 019		
Char. value of 0.1% proof F _{p0.1}				11808					13 530					15 006	6	
Max. prestressing force 0.90 · Fp0.1	kN			10 627	7				12 177	7				13 505	5	
Max. overstressing force $0.95 \cdot F_{\text{p0.1}}$	kN			11218	8				12 854	1				14 256	6	
Minimum concrete stren	gth / H	lelix /	Add	itiona	al rein	force	men	t / Ce	ntre s	pacir	ng an	d edg	ge dis	tance	•	
Minimum concrete strength																
Cube fcm, 0, cube, 150	MPa	23	28	34	38	43	23	28	34	38	43	23	28	34	38	43
							19	23	28	31	35	19	23	28	31	35
	MPa	19	23	28	31	35	15									
	MPa	19	23	28	31	35	15		I							
$\label{eq:cylinder} Cylinder \qquad f_{cm, \ 0, \ cylinder, \ \varnothing \ 150}$	MPa mm	19	23 710	28 710	31 710	35 710		780	780	780	780		850	850	850	85
Cylinder f _{cm, 0, cylinder, ∅ 150} Helix	1	19 							780 20	780 20	780 20				850 20	
Cylinder fcm, 0, cylinder, ∅ 150 Helix 0uter diameter	mm	19 	710	710	710	710		780					850	850		20
Cylinder f _{cm, 0, cylinder, ∅ 150} Helix 0uter diameter Bar diameter	mm mm		710 16	710 16	710 16	710 16		780 20	20 760 60	20 760 60	20		850 20	850 20	20	20 79
Cylinder fcm, 0, cylinder, ∅ 150 Helix 0uter diameter Bar diameter 1000000000000000000000000000000000000	mm mm mm		710 16 633	710 16 633	710 16 633	710 16 633		780 20 760	20 760	20 760	20 760		850 20 790	850 20 790	20 790	20 79 60
Cylinder f _{cm, 0, cylinder, ⊘ 150} Helix Outer diameter Bar diameter Length approximately Pitch	mm mm mm mm		710 16 633 50	710 16 633 50	710 16 633 50	710 16 633 50		780 20 760 60	20 760 60	20 760 60	20 760 60		850 20 790 60	850 20 790 60	20 790 60	20 79 60 14
Cylinderfcm, 0, cylinder, Ø 150HelixOuter diameterBar diameterLength approximatelyPitchNumber of pitches	mm mm mm mm		710 16 633 50 13	710 16 633 50 13	710 16 633 50 13	710 16 633 50 13		780 20 760 60 13	20 760 60 13	20 760 60 13	20 760 60 13		850 20 790 60 14	850 20 790 60 14	20 790 60 14	20 79 60 14
Cylinderfcm, 0, cylinder, ∅ 150Helix0Outer diameter8ar diameterBar diameter1Length approximately1Pitch1Number of pitches1Distance1	mm mm mm mm		710 16 633 50 13	710 16 633 50 13	710 16 633 50 13	710 16 633 50 13		780 20 760 60 13	20 760 60 13	20 760 60 13	20 760 60 13		850 20 790 60 14	850 20 790 60 14	20 790 60 14	20 79 60 14 55
Cylinderfcm, 0, cylinder, ∅ 150HelixOuter diameterBar diameterLength approximatelyPitchNumber of pitchesDistanceEAdditional reinforcement	mm mm mm mm		710 16 633 50 13 45	710 16 633 50 13 45 11 20	710 16 633 50 13 45 11 20	710 16 633 50 13 45 11 20		780 20 760 60 13 50 11 20	20 760 60 13 50 11 20	20 760 60 13 50 11 20	20 760 60 13 50 11 20		850 20 790 60 14 55 12 20	850 20 790 60 14 55	20 790 60 14 55	20 79 60 14 55 12 20
Cylinderfcm, 0, cylinder, Ø 150HelixOuter diameterOuter diameterBar diameterLength approximatelyPitchNumber of pitchesDistanceDistanceEAdditional reinforcementNumber of stirrupsBar diameterSpacing	mm mm mm mm mm mm mm		710 16 633 50 13 45 11	710 16 633 50 13 45 11 20 70	710 16 633 50 13 45 11 20 70	710 16 633 50 13 45 11 20 70		780 20 760 60 13 50 11 20 75	20 760 60 13 50 11 20 75	20 760 60 13 50 11 20 75	20 760 60 13 50 11 20 75		850 20 790 60 14 55	850 20 790 60 14 55 12	20 790 60 14 55 12	850 200 799 600 14 555 122 200 75
Cylinderfcm, 0, cylinder, Ø 150HelixOuter diameterBar diameterELength approximatelyPitchNumber of pitchesEDistanceEAdditional reinforcementNumber of stirrupsBar diameter	mm mm mm mm mm mm mm		710 16 633 50 13 45 11 20 70 55	710 16 633 50 13 45 11 20	710 16 633 50 13 45 11 20	710 16 633 50 13 45 11 20		780 20 760 60 13 50 11 20	20 760 60 13 50 11 20	20 760 60 13 50 11 20	20 760 60 13 50 11 20		850 20 790 60 14 55 12 20	850 20 790 60 14 55 12 20	20 790 60 14 55 12 20 75 60	20 79 60 12 55 12 20 75 60
Cylinderfcm, 0, cylinder, Ø 150HelixOuter diameterOuter diameterBar diameterLength approximatelyPitchNumber of pitchesDistanceDistanceEAdditional reinforcementNumber of stirrupsBar diameterSpacing	mm mm mm mm mm mm mm mm		710 16 633 50 13 45 11 20 70	710 16 633 50 13 45 11 20 70	710 16 633 50 13 45 11 20 70	710 16 633 50 13 45 11 20 70		780 20 760 60 13 50 11 20 75	20 760 60 13 50 11 20 75 55	20 760 60 13 50 11 20 75	20 760 60 13 50 11 20 75		850 20 790 60 14 55 12 20 75	850 20 790 60 14 55 12 20 75	20 790 60 14 55 12 20 75	20 79 60 12 55 12 20 75 60
Cylinderfcm, 0, cylinder, Ø 150HelixOuter diameterOuter diameterBar diameterBar diameterELength approximatelyPitchNumber of pitchesDistanceDistanceEAdditional reinforcementNumber of stirrupsBar diameterSpacingDistance from anchor plateF	mm mm mm mm mm mm mm mm mm mm		710 16 633 50 13 45 11 20 70 55	710 16 633 50 13 45 11 20 70 55	710 16 633 50 13 45 11 20 70 55	710 16 633 50 13 45 11 20 70 55		780 20 760 60 13 50 11 20 75 55	20 760 60 13 50 11 20 75 55	20 760 60 13 50 11 20 75 55	20 760 60 13 50 11 20 75 55		850 20 790 60 14 55 12 20 75 60	850 20 790 60 14 55 12 20 75 60	20 790 60 14 55 12 20 75 60	200 79 60 12 55 12 20 75 60
Cylinderfcm, 0, cylinder, Ø 150HelixOuter diameterBar diameterEBar diameterELength approximatelyPitchNumber of pitchesEDistanceEAdditional reinforcementENumber of stirrupsBar diameterSpacingDistance from anchor plateFMinimum outer dimensionsB × B	mm mm mm mm mm mm mm mm mm mm		710 16 633 50 13 45 11 20 70 55 790	710 16 633 50 13 45 11 20 70 55 790	710 16 633 50 13 45 11 20 70 55	710 16 633 50 13 45 11 20 70 55 790		780 20 760 60 13 50 11 20 75 55 860	20 760 60 13 50 11 20 75 55 860	20 760 60 13 50 11 20 75 55	20 760 60 13 50 11 20 75 55 860		850 20 790 60 14 55 12 20 75 60 920	850 20 790 60 14 55 12 20 75 60	20 790 60 14 55 12 20 75 60 920	200 790 14 555 12 200 755 600 920
Cylinder fcm, 0, cylinder, Ø 150 Helix Outer diameter Bar diameter E Bar diameter E Length approximately Pitch Number of pitches E Additional reinforcement E Number of stirrups Bar diameter Spacing Distance from anchor plate F Minimum outer dimensions B × B Centre spacing and edge distance	mm mm mm mm mm mm mm mm mm mm mm		710 16 633 50 13 45 11 20 70 55 790	710 16 633 50 13 45 11 20 70 55 790 805	710 16 633 50 13 45 11 20 70 55 790 805	710 16 633 50 13 45 11 20 70 55 790		780 20 760 60 13 50 11 20 75 55 860 875	20 760 60 13 50 11 20 75 55 860 875	20 760 60 13 50 11 20 75 55 860	20 760 60 13 50 11 20 75 55 860 875		850 20 790 60 14 55 12 20 75 60 920 940	850 20 790 60 14 55 12 20 75 60 920	20 790 60 14 55 12 20 75 60 920 940	200 79 600 14 55 200 75 600 922 94

Internal Post-tensioning System

Annex 24



Minimum concrete strength – Helix – Additional reinforcement – Centre spacing and edge distance

of European Technical Assessment **ETA-09/0286** of 19.09.2018

Centre spacing and edge distance

Modification of centre spacing and edge distance are in accordance with the Clauses 1.8 and 2.2.3.5.

$$b_{\underline{c}} \quad \begin{cases} \geq 0.85 \cdot b_{c} \\ \text{and} \\ \geq \text{Helix, outside diameter}^{1)} \end{cases}$$

$$\begin{array}{lll} a_{\underline{c}} & \geq \frac{A_{c}}{b_{\underline{c}}} \\ \\ A_{c} & = a_{c} \cdot b_{c} & \leq & a_{\underline{c}} \cdot b_{\underline{c}} \end{array}$$

Corresponding edge distances

$$a_{\underline{e}} = \frac{a_{\underline{c}}}{2} - 10 \text{ mm} + c \quad \text{and} \quad b_{\underline{e}} = \frac{b_{\underline{c}}}{2} - 10 \text{ mm} + c$$

c..... Concrete cover

¹⁾.... Except the dimensions of helix, the outer dimensions of the additional reinforcement are adjusted accordingly. Further modifications of reinforcement are in accordance with Clause 2.2.3.5.

Internal Post-tensioning System

Modification of centre spacing and edge distance

Annex 25

1) Preparatory work

The components of the prestressing kit are stored so as to avoid any damage or corrosion.

2) Anchorage recesses

Adequate space to accommodate and to use the prestressing jack is ensured, see also the Clauses 1.2.6 and 2.2.3.3.

3) Fastening the bearing trumplates

Four holes are provided to fasten the bearing trumplates to the formwork. The trumpet is screwed into the bearing trumplate. The helix is either welded to the bearing trumplate by means of radial bars, see also Clause 2.2.4.6, or positioned by fastening it to the existing reinforcement.

4) Placing of the sheaths

The sheaths are placed on supports with spacing according to Clause 1.6 and minimum radii of curvature according to Clause 1.9. The sheaths are jointed in a leak-proof way. The sheaths are supported such that any movement is prevented.

The same applies for prefabricated tendons.

5) Installation of tensile elements (prestressing steel)

The prestressing steel is pushed or pulled into the sheath before or after concreting of the structure.

6) Installation of the inaccessible fixed anchorages

After passing the strands through the anchor head, they are anchored individually in the cones by means of ring wedges. After assembling the wedges are secured with springs or a wedge retaining plate. An alternative is pre-locking each individual strand with $\sim 0.5 \cdot F_{pk}$ and applying a wedge retaining plate.

7) Installation of fixed coupler anchor head 2.BA

The function of the fixed coupler is to connect two tendons, whereas the first tendon is stressed before the second tendon is installed and stressed.

The coupling is achieved by pushing the strands into the already tensioned coupler anchor head K, side 2.BA (outer pitch circle), whereby the strands are marked to check the correct depth of penetration.

The coupler anchor head H, 2.BA is assembled with ring wedges and a wedge retaining plate. It is connected to the already tensioned coupler anchor head H, 1.BA by means of a threaded coupler sleeve.

8) Assembly of movable coupler

The movable coupler serves to lengthen unstressed tendons. The axial movement during stressing is ensured by a sheathing box suitable to the expected elongation at the position of the coupler.

The assembly of the coupler anchor head is performed in accordance with Point 7) and Clause 1.2.5. The transverse forces at the end of the trumpet are covered by steel deflector rings.

9) Checking the tendons before concreting

Before concreting the structure, fastening and position of the entire tendon are checked and corrected if necessary. The sheaths are checked for any damage.

Internal Post-tensioning System Description of installation Annex 26

of European Technical Assessment **ETA-09/0286** of 19.09.2018

10) Assembly of anchor head/coupler anchor head 1.BA

After passing the strands through the anchor head, they are anchored individually in the cones by means of ring wedges. The same applies for the coupler anchor head in case of fixed couplers in the first construction stage.

11) Prestressing

At the time of stressing the mean concrete compressive strength is at least according to Table 6 and the provisions of Clause 1.10. Stressing and possible wedging is carried out with a suitable prestressing jack and in accordance with Clause 2.2.4.2.

The elongation of the tendon and the prestressing forces is checked and recorded systematically during the stressing operation.

Restressing the tendons is allowed in accordance with Clause 2.2.4.3.

12) Grouting the tendons

The grout is injected through the inlet holes until it escapes from the outlet tubes with the same consistency. All vents and grouting inlets are sealed immediately after grouting, see also Clause 2.2.4.5.1.

Grease or wax are injected in accordance with Clause 2.2.4.5.2 and the recommendations of the supplier.

More detailed information on installation can be obtained from the ETA holder.

of European Technical Assessment **ETA-09/0286** of 19.09.2018

Seven-wire strands according to prEN 10138-3 ¹⁾

Steel name			Y1770S7	Y1860S7	Y1770S7	Y1860S7
Tensile strength	R _m	MPa	1 770	1 860	1 770	1 860
Diameter	d	mm	15.3	15.3	15.7	15.7
Nominal cross-sectional area	Ap	mm ²	140	140	150	150
Nominal mass per metre	М	kg/m	1.093 1.17			72
Permitted deviation from nominal m	ass	%		±	2	
Characteristic value of maximum force	F_{pk}	kN	248	260	266	279
Maximum value of maximum force	F _{m, max}	kN	285	299	306	321
Characteristic value of 0.1% proof force ²⁾	F _{p0.1}	kN	218	229	234	246
Minimum elongation at maximum force, $L_0 \ge 500 \text{ mm}$	A _{gt}	%		3	.5	
Modulus of elasticity	Ep	MPa		195 ()00 ³⁾	

¹⁾ Suitable strands according to standards and regulations in force at the place of use may also be used.

²⁾ For strands according to prEN 10138-3, 09.2000, the value is multiplied by 0.98.

3) Standard value

Internal Post-tensioning System

Prestressing steel strand specifications

of European Technical Assessment **ETA-09/0286** of 19.09.2018

Contents of the pre	scribed test plan				
Subject / type of contro	ol	Test or control method	Criteria, if any	Minimum number of samples	Minimum frequency of control
	Material	Checking ¹⁾	2)	100 %	continuous
Bearing trumplate	Detailed dimensions	Testing	2)	3% , $\ge 2 \text{ specimens}$	continuous
Ţ [Visual inspection 3)	Checking	2)	100 %	continuous
	Traceability			bulk	
	Material	Checking ¹⁾	2)	100 %	continuous
Anchor head, Coupler anchor head,	Detailed dimensions	Testing	2)	5% , $\ge 2 \text{ specimens}$	continuous
Coupler sleeve	Visual inspection ³⁾	Checking	2)	100 %	continuous
	Traceability			full	
	Material	Checking ¹⁾	2)	100 %	continuous
	Treatment, hardness	Testing	2)	0.5 %, $\ge 2 \text{ specimens}$	continuous
Ring wedge	Detailed dimensions	Testing	2)	5% , $\ge 2 \text{ specimens}$	continuous
Į	Visual inspection 3)	Checking	2)	100 %	continuous
	Traceability			full	
	Material	Checking	2), 4)	100 %	continuous
Strand	Dimension	Testing	2)	1 sample	each coil or
	Visual inspection	Checking	2)	1 sample	every 7 tons 5)
	Material	Checking ⁶⁾	2)	100 %	continuous
Steel strip duct	Dimension	Testing	2)	3% , $\ge 2 \text{ specimens}$	continuous
	Traceability			full	
Cement, admixtures, additions of filling	Material	Checking ⁶⁾	2)	100 %	continuous
materials as per EN 447	Traceability			full	

¹⁾ Checking by means of an inspection report 3.1 according to EN 10204.

²⁾ Conformity with the specifications of the component

³⁾ Successful visual inspection does not need to be documented.

- ⁴⁾ Checking of relevant certificate as long as the basis of "CE"-marking is not available.
- ⁵⁾ Maximum between a coil and 7 tons is taken into account
- ⁶⁾ Checking of relevant certificate, CE marking and declaration of performance or, if basis for CE marking is not available, certificate of supplier
- Traceability full Full traceability of each component to its raw material.
- Material Defined according to technical specification deposited by the supplier

Detailed dimensionMeasuring of all the dimensions and angles according to the specification given in the test planVisual inspectionMain dimensions, correct marking and labelling, surface, corrosion, coating, etc.Treatment, hardnessSurface hardness, core hardness and treatment depth

Internal Post-tensioning System

Contents of the prescribed test plan

Annex 29

of European Technical Assessment **ETA-09/0286** of 19.09.2018

Audit testing

Subject / type of cont	trol	Test or control method	Criteria, if any	Minimum number of samples ¹⁾	Minimum frequency of control
	Material	Checking and testing, hardness and chemical ²⁾	3)	1	1/year
Bearing trumplate	Detailed dimensions	Testing	3)	1	1/year
	Visual inspection	Checking	3)	1	1/year
Anchor head, Coupler anchor	Material	Checking and testing, hardness and chemical ²⁾	3)	1	1/year
head, Coupler sleeve	Detailed dimensions	Testing	3)	1	1/year
	Visual inspection	Checking	3)	1	1/year
	Material	Checking and testing, hardness and chemical ²⁾	3)	2	1/year
	Treatment, hardness	Checking and testing, hardness profile	3)	2	1/year
Ring wedge	Detailed dimensions	Testing	3)	1	1/year
	Main dimensions, surface hardness	Testing	3)	5	1/year
	Visual inspection	Checking	3)	5	1/year
Single tensile elemer	nt test	According EAD 160004-00 Annex C.)-0301,	1 series	1/year

¹⁾ If the kits comprise different kinds of anchor heads e.g. with different materials, different shape, different wedges, etc., then the number of samples are understood as per kind.

²⁾ Testing of hardness and checking of chemical composition by means of an inspection report 3.1 according to EN 10204.

- ³⁾ Conformity with the specifications of the components
- Material Defined according to technical specification deposited by the ETA holder at the Notified body
- Detailed dimension Measuring of all the dimensions and angles according to the specification given in the test plan
- Visual inspectionMain dimensions, correct marking and labelling, surface, corrosion, coating, etc.Treatment, hardnessSurface hardness, core hardness and treatment depth

Internal Post-tensioning System Audit testing

Nº	Essential Characteristic	Clause		Intended use cording to C Table 8	
			1	2	3
1	Resistance to static load	3.2.1.1	+	+	+
2	Resistance to fatigue	3.2.1.2	+	+	+
3	Load transfer to the structure	3.2.1.3	+	+	+
4	Friction coefficient	3.2.1.4	+	+	+
5	Deviation, deflection (limits) for internal bonded and internal unbonded tendon	3.2.1.5	+	+	+
6	Assessment of assembly	3.2.1.6	+	+	+
7	Corrosion protection	3.2.1.7	+	+	+
8	Reaction to fire	3.2.2.1	+	+	+
9	Content, emission and/or release of dangerous substances	3.2.3.1	+	+	+
10	Resistance to static load under cryogenic conditions for applications with anchorage/ coupling outside the possible cryogenic zone	3.2.4.1			+

Key

+.....Essential characteristic relevant for the intended use

For combinations of intended uses, the essential characteristics of all intended uses composing the combination are relevant.

Internal Post-tensioning System

Essential characteristics for the intended uses

Annex 31

Reference documents

European Assessment Documents

EAD 160004-00-0301	Post-Tensioning Kits for Prestressing of Structures
EAD 160027-00-0301	Special filling products for post-tensioning kits

Eurocodes

Eurocode 2	Eurocode 2: Design of concrete structures
Eurocode 3	Eurocode 3: Design of steel structures
Eurocode 6	Eurocode 6: Design of masonry structures

Standards

Stanuarus	
EN 206+A1, 11.2016	Concrete – Specification, performance, production and conformity
EN 445, 10.2007	Grout for prestressing tendons – Test methods
EN 446, 10.2007	Grout for prestressing tendons – Grouting procedures
EN 447, 10.2007	Grout for prestressing tendons – Basic requirements
EN 523, 08.2003	Steel strip sheaths for prestressing tendons – Terminology, requirements, quality control
EN 1561, 10.2011	Founding – Grey cast irons
EN 1563, 12.2011	Founding – Spheroidal graphite cast irons
EN 10025-2, 11.2004 EN 10025-2/AC, 06.2005	Hot rolled products of structural steels – Part 2: Technical delivery conditions for non-alloy structural steels
EN 10083-1, 08.2006	Steels for quenching and tempering – Part 1: General technical delivery conditions
EN 10083-2, 08.2006	Steels for quenching and tempering – Part 2: Technical delivery conditions for non alloy steels
EN 10084, 04.2008	Case hardening steels – Technical delivery conditions
EN 10204, 10.2004	Metallic products – Types of inspection documents
EN 10210-1, 04.2006	Hot finished structural hollow sections of non-alloy and fine grain steels – Part 1: Technical delivery conditions
EN 10216-1, 12.2013	Seamless steel tubes for pressure purposes – Technical delivery conditions – Part 1: Non-alloy steel tubes with specified room temperature properties
EN 10217-1, 05.2002 EN 10217-1/A1, 01.2005	Welded steel tubes for pressure purposes – Technical delivery conditions – Part 1: Non-alloy steel tubes with specified room temperature properties
EN 10219-1, 04.2006	Cold formed welded structural hollow sections of non-alloy and fine grain steels – Part 1: Technical delivery conditions
EN 10255+A1, 04.2007	Non-Alloy steel tubes suitable for welding and threading – Technical delivery conditions

Internal Post-tensioning System **Reference documents**

of European Technical Assessment ETA-09/0286 of 19.09.2018

Annex 32

EN 10270-1, 10.2011	Steel wire for mechanical springs – Part 1: Patented cold drawn unalloyed steel wire
EN 10277-2, 03.2008	Bright steel products – Technical delivery conditions – Part 2: Steels for general engineering purposes
EN 10305-5, 01.2010	Steel tubes for precision applications – Technical delivery conditions – Part 5: Welded cold sized square and rectangular tubes
EN ISO 17855-1, 10.2014	Plastics – Polyethylene (PE) moulding and extrusion materials – Part 1: Designation system and basis for specifications
EN ISO 19069-1, 03.2015	Plastics – Polypropylene (PP) moulding and extrusion materials – Part 1: Designation system and basis for specifications
prEN 10138-3, 09.2000	Prestressing steels – Part 3: Strand
prEN 10138-3, 08.2009	Prestressing steels – Part 3: Strand
CWA 14646, 01.2003	Requirements for the installation of post-tensioning kits for prestressing of structures and qualification of the specialist company and its personnel
98/456/EC	Commission decision 98/456/EC of 3 July 1998 on the procedure for attesting the conformity of construction products pursuant to Article 20 (2) of Council Directive 89/106/EEC as regards posttensioning kits for the prestressing of structures, Official Journal of the European Communities L 201 of 17 July 1998, p. 112
305/2011	Regulation (EU) № 305/2011 of the European Parliament and of the Council of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC, OJ L 88 of 4 April 2011, p. 5, amended by Commission Delegated Regulation (EU) № 568/2014 of 18 February 2014, OJ L 157 of 27.05.2014, p. 76 and Commission Delegated Regulation (EU) № 574/2014 of 21 February 2014, OJ L 159 of 28.05.2014, p. 41
568/2014	Commission Delegated Regulation (EU) № 568/2014 of 18 February 2014 amending Annex V to Regulation (EU) № 305/2011 of the European Parliament and of the Council as regards the assessment and verification of constancy of performance of construction products, OJ L 157 of 27.05.2014, p. 76

Internal Post-tensioning System Reference documents Annex 33

of European Technical Assessment **ETA-09/0286** of 19.09.2018

Materialprüfungsamt Nordrhein-Westfalen

Prüfen · Überwachen · Zertifizieren

Certificate of constancy of performance 0432-CPR-00299-1.4 (EN)

Version 02

In compliance with Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011 (the Construction products Regulation or CPR), this certificate applies to the construction product

BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands

Bonded or unbonded post-tensioning kits for prestressing of structures with strands

placed on the market under the name or trade mark of

BBR VT International Ltd

Ringstr. 2

CH-8603 Schwerzenbach / Switzerland

and produced in the manufacturing plant(s)

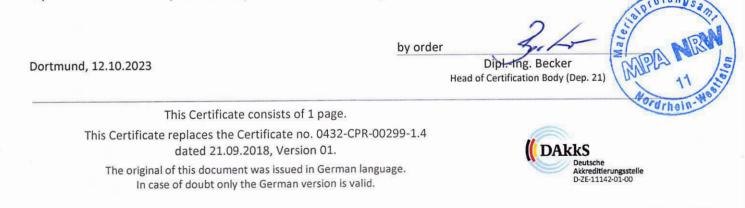
BBR VT International Ltd

Ringstr. 2

CH-8603 Schwerzenbach / Switzerland

This certificate attests that all provisions concerning the assessment and verification of constancy of performance described in the

ETA-09/0286, issued on 19.09.2018


and

EAD 160004-00-0301

under **system 1+** for the performance set out in the ETA are applied and that the factory production control conducted by the manufacturer is assessed to ensure the

constancy of performance of the construction product.

This certificate was first issued on 30.07.2010 and will remain valid until 11.10.2028 as long as neither the ETA, the EAD, the construction product, the AVCP methods nor the manufacturing conditions in the plant are modified significantly, unless suspended or withdrawn by the notified product certification body.

Materialprüfungsamt Nordrhein-Westfalen • Marsbruchstraße 186 • 44287 Dortmund • Telefon +49 (0)231 4502-0 • Telefax +49 (0)231 458549 • MPA NRW Brandprüfzentrum Erwitte • Auf den Thränen 2 • 59597 Erwitte • Telefon +49 (0)2943 897-0 • Telefax +49 (0)2943 897-89 • • E-Mail: info@mpanrw.de • www.mpanrw.de •

BBR VT International Ltd

Ringstrasse 2 8603 Schwerzenbach (ZH) Switzerland

Tel +41 44 806 80 60 Fax +41 44 806 80 50

www.bbrnetwork.com info@bbrnetwork.com

BBR VT International Ltd Technical Headquarters and Business Development Centre Switzerland

REP A Global Network of Experts www.bbrnetwork.com